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Fig. 1. HOME-FREE LBM solver. Our novel fluid solver mixes a kinetic flow simulator and a volume-of-fluid sharp moving interface. For any given grid
resolution, our approach captures far more detailed fluid-air interactions than diffuse-interface based solvers. Moreover, we leverage the fact that the ratio of
density and viscosity between air and liquid is large enough that simulating the gas phase can be avoided, the resulting free-surface approximation thus
saving a big fraction of computational time. In this example, a fast-evolving sheet of water is flowing into a container, creating turbulence and a large amount
of bubbles bursting over time, computed at a resolution of 600x300Xx300 in 58s per frame and with only 8 Gb of memory.

Kinetic multiphase flow solvers have recently demonstrated exquisitely
complex and turbulent fluid phenomena involving splashing and bubbling.
However, they require full simulation of both the liquid phase and the air to
capture a large spectrum of fluid behaviors. Moreover, they rely on diffuse
interface tracking to properly account for the interfacial forces involved in
fluid-air interactions. Consequently, simulating visually appealing fluids is
extremely compute intensive given the required resolution to capture small
bubbles, and foam simulation is unattainable with this family of methods.
While water simulation involves density and viscosity differences between
the two phases so large that one can safely ignore the dynamics of air,
so-called kinetic free-surface solvers that only consider the liquid motion
have been unable to reproduce the full gamut of turbulent fluid behaviors,
being often unstable for even moderately complex scenarios. By revisiting
kinetic solvers using sharp interfaces and incorporating recent advances in
single-phase and multiphase LBM solvers, we propose a free-surface kinetic
solver, which we call HOME-FREE LBM, that not only handles turbulence,
glugging, and bubbling, but even foam where bubbles stick to each other
through surface tension. We demonstrate that our fluid simulator allows for
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fast and robust bubble growth, breakup, and coalescence, at a fraction of the
computational time that existing CG fluid solvers require.
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1 Introduction

With applications ranging from aerodynamics and hydrodynamics
to special effects in movies, fluid flows often exhibit fascinating
visual complexity. Free-surface flows — involving the motion of the
interface between fluid and air — are especially intricate, displaying
bubbles rising and bursting, splashing, and even foam. While many
efficient techniques for free-surface simulation based on grids or
particles have been proposed, they often fail to offer a unified ap-
proach to achieving realistic and complex free-surface behaviors.
Current solvers capable of simulating free-surface flows face sev-
eral limitations. Many rely on diffuse interfaces to properly capture
fluid-air interactions, requiring high-resolution computations [Song
et al. 2005; Zheng et al. 2009] and the entire simulation of the air
flow [Li et al. 2021, 2022, 2024]. Others suffer from numerical insta-
bility or significant dissipation, limiting their ability to accurately
capture air-fluid interactions in high Reynolds number turbulence
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[Qu et al. 2023; Deng et al. 2022; Wang et al. 2024]. Moreover, spe-
cialized approaches, such as those using bubble particles, are often
limited to bubbling and do not extend to other free-surface phenom-
ena [Busaryev et al. 2012; Wretborn et al. 2022]. Simulating complex
free-surface flows with a unified and efficient single-phase solver
thus remains a major challenge.

In this work, we introduce a high-performance kinetic approach
to simulating turbulent free-surface flows that is capable of handling
a large variety of air-fluid phenomena such as foaming, bubbling,
glugging, and splashing. Our method builds upon the free-surface
Lattice Boltzmann Method (FSLBM [Thiirey 2007], which models
the air-fluid interface as a sharp boundary), integrates recent inno-
vations in computer graphics, and adds key contributions to enable
highly turbulent simulations at low computational cost. Compared
to current kinetic free-surface solvers, we present various advances:
o we significantly improve upon the existing FSLBM [Thiirey 2007]

by incorporating a High-Order Moment-Encoded LBM (HOME-

LBM [Li et al. 2023b]) encoding of distribution functions, resulting

in our more efficient and more stable HOME-FREE LBM formula-

tion supporting high-turbulence free-surface flows;

e we introduce a massively-parallel algorithm to accurately track
bubbles and estimate their sizes, enabling detailed simulations of
foam and bubbles;

e we incorporate a turbulence model to significantly reduce the

possible disappearance of very small bubbles;

we adapt the double-sided bounce-back approach of Lyu et al.

[2023] to our framework and derive an efficient two-way force

expression that is valid for both thin-shell and thick objects;

e we also propose a new handling of fresh cells for liquid-gas-solid
coupling that prevents the usual sticking or bubbling artifacts of
previous methods;

finally, we employ the D3Q7 central-moment based collision
model of [Li et al. 2022] for the advection and diffusion of gas
concentration, to which a novel adaptive viscosity model is added
in order to stabilize complex membrane structures and foam dy-
namics at high Reynolds numbers.

The resulting fluid integrator is a unified computational technique to
simulate a broad range of free-surface phenomena (from glugging,
to bubbles and foam), which offers significant improvements in
timings, memory usage, and numerical stability over state-of-the-
art LBM-based two-phase fluid flow simulators.

2 Related work

Many numerical techniques have tried to emulate free-surface fluid
flows. We briefly review related works on free-surface and multi-
phase fluid flow simulation in order to motivate our approach.

2.1 Navier-Stokes based methods

Many methods rely on numerical approximations of the Navier-
Stokes equations, based on particles, (fixed) Eulerian grids, or (mov-
ing) Lagrangian grids. All are based on macroscopic discretizations
of the fluid motion, but differ depending on whether they simulate
only the fluid flow or both the fluid and the air flow.

Free-surface simulation. Particle methods have a long history in
fluid simulation. Smoothed Particle Hydrodynamic (SPH), arguably
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the most popular particle-based approach, has been used early in
free-surface simulation [Desbrun and Gascuel 1996; Premzoe et al.
2003], often with a blobby aspect of the induced interface [Des-
brun and Cani-Gascuel 1998; Zhu and Bridson 2005]. Realism of
SPH-based fluids improved over the years by incorporating incom-
pressibility [Solenthaler and Pajarola 2009; Bender and Koschier
2016], enforcing boundary conditions better [Schechter and Bridson
2012; Koschier and Bender 2017; Band et al. 2018], adding penalty
forces [Peer et al. 2015; Thmsen et al. 2013], or better control over
stability [Sun et al. 2018; Chalk et al. 2020; Liu et al. 2024]. Position-
based dynamics (PBD) was also shown to be an efficient approach
for free-surface simulation with particles [Macklin and Miller 2013;
Zhang et al. 2015; Alduan et al. 2017], with recent improvements
for the handling of surface tension [Xing et al. 2022]. Particle-In-
Cell (PIC) [Foster and Metaxas 1996] and Fluid-Implicit-Particle
(FLIP) [Zhu and Bridson 2005; Batty and Bridson 2008; Cornels et al.
2014; Azevedo et al. 2016; Fu et al. 2017] have been shown most use-
ful for viscous fluid simulation, similar to a number of other methods
coupling particles and grids for efficient computation [Fei et al. 2018;
Hu et al. 2018; Fei et al. 2019; Fang et al. 2020; Fei et al. 2021; Sancho
et al. 2024]. Mixing Eulerian and Lagrangian discretizations was
also proposed to handle large surface tension, where the interface is
simulated as a Lagrangian membrane [Ruan et al. 2021], and faster
pressure projections were achieved through algebraic multigrid ap-
proaches [Shao et al. 2022]. A major step towards improving the
details of free-surface simulation was achieved by adopting the level-
set method to animate the interface [Goldade et al. 2016; Aanjaneya
et al. 2017; Ando and Batty 2020]. Concurrently, the volume-of-fluid
(VOF) method has been employed to design monolithic solvers for
fluid-solid coupling [Takahashi and Batty 2020, 2022]. Recently, new
techniques were proposed to reproduce complex free-surface phe-
nomena; for instance, a Clebsch-based method [Yang et al. 2021;
Xiong et al. 2022] and the Gradient-Augmented Reference-Map
Method for Level-Set (GARM-LS) [Li et al. 2023a] were introduced
to simulate very detailed free-surface flows. Note that from all these
contributions, only two papers showed examples of flows involving
bubbles [Xing et al. 2022; Xiong et al. 2022].

Multiphase simulation. While the efficient inclusion of bubbles
has been proposed in a few approaches [Thirey et al. 2007; Kim
2010; Goldade et al. 2020; Wretborn et al. 2022, 2025], simulating
the full spectrum of multiphase flow behaviors has often required
the use of multiphase flow simulation where both fluid and air
are fully simulated. First, SPH-based multiphase simulations [So-
lenthaler and Pajarola 2008; Ren et al. 2014; Yan et al. 2016; Yang
et al. 2017] were proposed, but only for viscous flows. Power par-
ticles [de Goes et al. 2015; Aanjaneya et al. 2017] were used to
preserve exact local volumes and momenta near the interface and
improve the treatment of surface tension, before being extended via
the material-point method (MPM) to handle bubbles or foam [Qu
et al. 2023] — but again, only for fairly viscous fluids. A Moving-
Least-Squares Reproducing-Kernel Method (MLSRK) framework
to simulate multiphase fluids and solids in a unified manner was
also proposed [Chen et al. 2020a], requiring very small timesteps
in practice. The level set [Kim 2010] and VOF [Cho and Ko 2013;
Langlois et al. 2016] methods were also adapted to multiphase flows
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Fig. 2. Glugging. Our free-surface LBM-based fluid solver can handle glugging: as water is flowing down from an upper container, large bubbles first appear

along with several small bubbles; as the liquid accumulates in the bottom container, many small bubbles are formed, evolving within the turbulent flow.

Fig. 3. Pouring water. This example, similar to Fig. 1 but with a smaller surface tension, shows a fast-evolving sheet of water that is flowing into a container,

creating lots of turbulence and bubble motion, with many bubbles being formed, traveling around, clustering, some of them growing, and eventually bursting.

by improving the treatment of density and pressure jumps at the
interface: most related methods [Losasso et al. 2006; Mihalef et al.
2006; Kim et al. 2007; Boyd and Bridson 2012] rely on a variable
density pressure projection [Kang et al. 2000] and the ghost fluid
method [Hong and Kim 2005] to treat discontinuous jumps. Kar-
nakov et al. [2022] also proposed a multi-VOF method to simulate
bubbles and foam, but at the cost of large computational costs. An
MPM formulation was introduced in [Su et al. 2021; Tu et al. 2024] to
simulate viscoelastic liquids with phase change, while a mesh-based
Lagrangian approach to multiphase flows was proposed in [Misztal
et al. 2013]; both used only very low Reynolds numbers in their ex-
amples. Recent Eulerian-Lagrangian particle approaches have also
been successful at simulating bubbles [Deng et al. 2022; Wang et al.
2024], but no turbulent cases were shown. Hybrid solvers using
different numerical coupling between fluid velocity, pressure, and
interface position [Saye 2016, 2017; Sun et al. 2024] did not fare
much better in handling turbulent free-surface flows.

2.2 Kinetic methods

The lattice Boltzmann method (LBM), originating from Computa-
tional Fluid Dynamics (CFD), has recently been shown extremely
attractive for graphics due to its ability to handle turbulent flows
while offering massively-parallel computations as we now review.

Free-surface simulation. While adopted in graphics [Thiirey 2003,
2007], free-surface lattice Boltzmann method (FSLBM) was devel-
oped in CFD [Korner et al. 2005] by combining LBM with a VOF-
based interface-capturing technique for the simulation of incom-
pressible free surface flows. It uses a sharp interface between the

two phases as the volume-of-fluid field serves the role of an indica-
tor function. Moreover, the dynamics of the gas phase is ignored,
and only the pressure influence at the interface is considered while
the ratio of density and viscosity between the two fluid phases is
assumed infinite. These simplifications lead to high computational
efficiency (particularly on GPUs) and low memory usage compared
to multiphase flow simulation. A series of improvements to this tech-
nique in terms of efficiency and stability has been proposed [Thiirey
and Rude 2004; Thiirey et al. 2005; Thiirey and Ride 2005; Thiirey
et al. 2006; Thiirey and Riide 2009; Cao et al. 2020], with open-source
libraries now available [Janflen and Krafezyk 2011; Lehmann 2019;
Plewinski et al. 2024]. Yet, despite improved (but compute-intensive)
boundary treatments [Bogner et al. 2015], FSLBM has not been able
to simulate turbulent free-surface flows, bubbles, or even foam.

Multiphase simulation. The last decade has seen rapid progress
in the handling of bubbles with FSLBM, starting with [Korner et al.
2005; Thirey et al. 2007], and followed by a number of numerical
and algorithmic improvements [Ander] et al. 2014; Bogner 2017] to
efficiently handle bubble breakups and coalescence. These results
are now available as part of an open-source CFD solver called LB-
foam [Ataei et al. 2021]. Alas, we will demonstrate in this paper that
the current state-of-the-art methods in FSLBM suffer from instabil-
ity in turbulent cases and cannot handle complex or thin obstacles,
rendering them ill-suited to graphics purposes. Other kinetic multi-
phase solvers have been able to resolve all these shortcomings in
recent years by using a diffuse interface instead [Guo et al. 2017; Li
et al. 2021, 2022; Li and Desbrun 2023; Li et al. 2024; Ma et al. 2024],
as diffusiveness of the interface allows for better integration of the
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Fig. 4. Bubble rings. In this example, we show a time lapse of two bubble rings rising up, created by two strong vorticity loops for the initial velocity of the
fluid and a VOF field discretizing two air tori near the bottom of a fluid tank. They first connect, before ejecting a small bubble on their way to the surface.
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Fig. 5. Lattice structures. We use D2Q9 (a) in 2D and either D3Q19 (c) or
D3Q27 (d) in 3D for our LBM fluid simulation, where the lattice directions c;
are discretized microscopic velocities. Each discretized distribution function
fi is associated with its corresponding velocity c;. For the dissolved gas
concentration, we use a simpler D3Q7 (b) with lattice directions d; on which
the distribution function g; is simulated.

interfacial forces across the phases, adding stability compared to a
sharp interface treatment. However, this comes at a hefty price: cap-
turing small bubbles and their coalescence or breakups with such a
diffuse interface requires extremely large grid sizes, which translates
into very high memory requirements and timings. Moreover, foams
(where bubbles are tightly packed) can simply not be handled well
since a diffuse interface inherently smoothes the interface details,
preventing the formation of complex foam structures. Our improved
variant of FSLBM will, instead, offer a unified and robust handling
of bubbles and foam with much reduced timings and memory usage
than current kinetic solvers.

3 Background

Before introducing our new moment-encoded free-surface LBM
model, we briefly recap the free-surface LBM method and its current
variants, along with its most salient limitations.

3.1 Free surface lattice Boltzmann model (FSLBM)

LBM is a numerical approach that describes the motion of a fluid by
the time evolution of a mesoscopic distribution function f(v, x, ¢),
which represents the probability of a particle being present at po-
sition x, at time ¢, and with velocity v. To model single-phase or
free surface fluid dynamics, the governing kinetic equation for the
evolution of the distribution function, also called Boltzmann equa-
tion [Shan et al. 2006], is expressed as:

a

a—]:+v-Vf=Q(f)+F~Vuf, 1)
where F represents external forces and Q is a so-called collision
operator that relaxes the distribution function towards a local ther-

modynamic equilibrium state (often denoted as f¢%). This Boltzmann
equation can be discretized on a lattice in space, velocity, and time,

ACM Trans. Graph., Vol. 44, No. 6, Article 266. Publication date: December 2025.

leading to the lattice Boltzmann equations, which read:

Vi, ﬁ(x+ci,t+1)—ﬁ(x,t) :Qi+Fi, (2)
where f;(x,t) encodes the distribution f in the i-th direction at
position x and time t, ¢; is the discrete lattice velocity in the i-th
direction, Q; is the discretized collision operator, and F; results from
external forces projected onto distribution space. The D2Q9 and
D3Q19 lattices shown in Fig. 5 are often employed for 2D and 3D
simulations, respectively.

Through operator splitting, Eq. (2) can be divided in two steps.
The first step is the streaming step, evaluating

fix0) = filx=cit), ®)
followed by a collision step expressed as
file,t+1)=fF(xt) + Qi+ F. (4)

where Q; =—(f"(x,t) - fieq(x, t))/7 is the BGK model [Bhathnagor
et al. 1954], where 7 =3v + 0.5 (v being the kinematic viscosity)
is the relaxation time. This simple collision model is adopted in
LBfoam [Ataei et al. 2021]. Additionally, FSLBM only uses low-order

discretizations of the equilibrium state f*1 expressed as

cu (cu)? u?

€q _ 1
: u) =pwi(l+ — + -—), 5
Ji " (p,u) = pwi( 2 T o 2c§) ®)
and of the force term in distribution space:
1 cu u-c;
Fi(x,t) =wi(1 - =)(= - ——) - F, (6)
217 ¢ Cs

where w; are the lattice weights and c; is the speed of sound (1/v/3
in 3D). Macroscopic physical quantities are derived from the distri-
bution function through its moments [Li et al. 2023b], yielding

q-1 g-1 q-1
_ _ 1 _ , 1
p=2 e pu=efit gF pSep= ) (el o) fi )

where S is the second-order velocity moment, while pressure is
simply p=pc?. Dealing with obstacles in the fluid is often achieved
through one of the many variants of the bounce-back approach
[Succi 2001] during the streaming step.

In order to track the interface motion between the liquid and the
gas (air) phase, the volume-of-fluid (VOF) method [Hirt and Nichols
1981] is used in FSLBM: it consists in advecting a field ¢ in the fluid
macroscopic velocity through a transport equation

%w.w’:o, ®)

where @(x) is a dimensionless scalar value representing the per-
centage of liquid volume in the dual cell of a node x, with ¢ =0
indicating air and ¢ =1 indicating a full dual cell of liquid. These



Fig. 6. Bubbly layer. After multiple bubbles are nucleated at the bottom of
a tank, these bubbles rise and congregate tightly at the top of the liquid,
creating a foam layer with a complex free surface.

volume fractions effectively partition the grid nodes into three cate-
gories: L representing liquid nodes, G representing air nodes, and
I representing the interface nodes where 0 < ¢ < 1, which should
always come in between liquid and gas nodes.
A fast mass advection algorithm [Kérner et al. | 0.0
2005] is used in FSLBM to discretize Eq. (8),
which takes advantage of the evolution of dis- 0.2
tribution functions to track ¢ in the domain: by

calculating the mass exchange between neigh-

boring nodes x and x + ¢; based on the distri-

bution functions f and since the VOF (see inset) is equal to the fluid
mass divided by its density, we get the new value of ¢ at x as

0.0

0.0
/n

q-1
blxt+1) = plx.0) + ﬁ ZO 0(x) - (fx+ent) — filx.1)), (9)

where 7 is the reverse opposite direction of direction i and 6(x) is
weighting the mass exchange through

1 ifxel
O(x) =350 ifxeG (10)

%(qﬁ(x, )+ d(x+c;,t) ifxel
This interface advection approach is particularly convenient as it
does not require the reconstruction of the interface or an approxi-
mation of its geometric properties such as normals or curvatures.
One only needs to update the status of the nodes after advection:
if ¢(x,t+1) = 1+¢4 for €4 = 1e-4 (resp., if ¢(x,t+1) < 0—¢p), an
interface node is converted into a liquid (resp., gas) node and ¢ is
clamped to 1 (resp., 0), and the clamped volumes are redistributed
to neighboring cells to enforce mass preservation [Lehmann 2019].
While free-surface LBM ignores the dynamics of the gas phase,
setting correct pressures is crucial to allow for bubbles not to cavitate.
This is achieved through a pressure boundary condition: in the LBM
step of Eq. (3), the distribution f from the gas to the interface node

is unknown, but approximated via

f ) = [ (pgulx ) + [ pgu(x 1) - filxt), (1)

where 7 indicates the reversed index satisfying ¢; = —c;. The gas
density p, is estimated through
pg = (pg = 2yK(x)) /<, (12)
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which accounts for the surface tension coefficient y of the inter-
face, the atmospheric pressure py [Kérner et al. 2005], and the local
mean curvature x(x) of the interface encoded by the volume frac-
tion ¢, where « is evaluated from a local piecewise-linear interface
construction (PLIC) of the interface [Youngs 1984; Lehmann 2019].

3.2 Discussion

From this brief recap of the current FSLBM approach, one can al-
ready appreciate that some of its commonly-used approximations
may lead to numerical instability as soon as the fluid flow contains
turbulent parts. For instance, the low-order evaluations of the equi-
librium state in Eq. (5) (and similarly for the incorporation of the
external forces in Eq. (6)) are ill-advised if the flow is even slightly
turbulent. Similarly, the BGK-based collision model has been recog-
nized as low-order accurate as soon as the inertia forces in the fluid
are not small. Moreover, only considering a constant atmospheric
pressure and the surface tension without accounting for the pres-
sure coming from the lamellae between bubbles is bound to limit the
range of bubbling and foaming that our fluid simulator can handle.
Boundary handling for obstacles also cannot handle thin or non-
closed objects, while this is common practice in single-phase LBM
graphics simulators. Finally, recent advancements such as HOME-
LBM have allowed for both reduced memory usage in the storage
of the distribution functions and improved pressure behavior near
obstacles. We now delve into our contributions, describing how
the current FSLBM limitations are either completely removed or
dramatically reduced and which changes we incorporate in order to
result in a simulator with a significantly smaller memory footprint
and quite a dramatic drop in computational complexity.

4 Our HOME-FREE LBM Solver

We now detail the various components of our new HOME-FREE
LBM solver, starting with the fundamental changes in distribution
function representation and collision operator, to our approach to
fluid-solid coupling, as well as bubble and foam modeling.

4.1 Foundations of HOME-FREE LBM

Two of the most basic changes to FSLBM we propose have to do with
memory efficiency and stability: we adopt a sixth-order collision
model and the HOME-LBM encoding of the distribution function.

Collision model. In order to add stability and accuracy to our
kinetic free-surface solver, we leverage the non-orthogonal central-
moment multiple-relaxation-time model (NOCM-MRT) [De Rosis
and Luo 2019] to avoid numerical instability in the presence of
turbulent flows. The collision operator Q thus becomes

Q=-M"'(R(m-m*) + (I - {R)K), (13)
where M is a matrix known in closed form as a function of the
macroscopic velocity u that converts the distribution function into
central-moment space through m = Mf, R is a diagonal matrix
containing all individual relaxation rates r;, and K represents the
force terms projected into central-moment space. Following Li et al.
[2020] for single-phase fluid simulation based on the lattice struc-
ture from Fig. 5 (d), we use a sixth-order Hermite expansion of the
equilibrium distribution function, leading to most central-moment
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266:6 + Wangetal.

Fig. 7. Bunny drops. For a light and heavy bunny being dropped in a water tank (top), many bubbles are formed during impact, and the heavy bunny
eventually falls to the bottom while the light one floats; bubble rings even appear, rising up and then bursting on the surface of the water (bottom).

Fig. 8. Comparisons between BGK, TRT, and HOME-FREE models. For
a simple 2D dam break, an FSLBM simulator using a BGK collision model
crashes after 71 frames (top left); the TRT model allows the simulation to go
a few frames further but, again, crashes at frame 75 (top right). Our HOME-
FREE LBM simulator handles this case easily (bottom), never crashing.

terms vanishing except for:

== = =, = G
while the forcing terms in the central moments turn into:
Ky =F;, KZZFy9 K3 =F,
Ko = 3F, Ky = 3F,, Kip=%F.,  (15)
Kps = 5Fx, Koy = 5F,y, Kps = 5F;.

Moment-encoding of distribution. Motivated by the recent intro-
duction of the HOME-LBM framework [Li et al. 2023b], we replace
the storage of the usual D3Q19 or D3Q27 lattice distribution func-
tions f; by only p, u, and S, for a total of 10 scalar values per grid node.
Beyond obvious memory savings, the high-order reconstruction of
the distribution functions from these terms and the computationally-
simpler expressions of the collision operator bring added numerical
stability as demonstrated in [Li et al. 2023b, 2024].

HOME-FREE solver loop at a glance. Our resulting HOME-FREE
LBM solver thus proceeds as follows. First, we perform the streaming
step just like in FSLBM, but the distribution function f; from the
neighboring node (the right term in Eq. (3)) is evaluated on the
fly from the three velocity-moments of this node by a third-order
Hermite-based “filtered” reconstruction through
c;-u HEl(¢):s H,E,?;;]Y(Ci)Taﬁy

z " 2cd " Z 2¢8

S S aﬁy s

Topy = Sapty + Saytip + S ia — 2UgUpuy. (17)

ﬁ-zpwi1+ s (16)
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where H represents Hermite polynomial bases and affy € {xxy, xyy,
XXz, X2z, Y2z, yyz, xyz } denotes the Cartesian coordinate indices. We
then convert the streamed distributions back into their temporary
velocity-moments p*, u* and §* via Eq. (7). Finally, the collision step,
replacing Eq. (4), evaluates the final velocity-moments as:

p(x,t+1) =p", (18)

ua(x,t +1) = ug + Fo/(2p"), (19)
" 1, ., 2r-1 . «

Sap(x,t+1) = (1 - 1/T)Sa/i’+; uauﬁ+W(F“uﬁ+Fﬂu“)’ (20)

=1, . . « 1
S,m(x,t+ 1) = ?(ZSW _Sﬁﬁ - SYY) + 5

(uj;z + u};z + u;z)

+ %(Zuzz - uzz - u;z) + %Fau;
-1 * * *

+ % (2Fquy - Fﬁuﬁ - Fyuy), (21)
Incorporating both the HOME-LBM approach and a higher-order
collision model into our kinetic free-surface method has already
dramatic consequences on the stability of the solver: as Fig. 8 demon-
strates, a basic dam break generates instabilities with the BGK or
two-relaxation-time (TRT) collision model [Bogner 2017], but not
with HOME-FREE LBM. The accuracy of our framework improves
several aspects of the free-surface treatment, such as the interface
pressure boundary condition from Eq. (11): it uses the filtered distri-
bution function f; reconstructed using Eq. (16) which offers a more
accurate treatment. With these solid foundations in place, we can
now focus on the remainder of our free-surface kinetic solver.

4.2 Efficient bubble model for thin shell

Although the HOME-FREE setup we presented above can simulate
high Reynolds number liquid with splashes, it cannot support any
type of bubbling effects thus far. Formulating an efficient bubble
model in this current framework is thus crucial.

Existing treatment of bubbles in FSLBM. In traditional FSLBM, gas
distribution function values are not simulated, but reconstructed on
demand through Eq. (11), and gas pressure inside a bubble is always
assumed to be the atmospheric pressure py =pasmos :=c2. This is very



limiting, as bubble pressure should change due to bubbles growing,
shrinking, and/or merging. More involved bubble models [Ataei
et al. 2021] have been proposed where the volume change of a
bubble b; (defined as a connected region of gas and interface nodes
surrounded by liquid) is recorded before and after one simulation
step so that the pressure update can be evaluated based on the ideal
gas law (for an isothermal simulation) as:
atmos V (b, 0)
p(bit) =p Vb0 (22)
where p(b;, t) and V (b;, t) refer to bubble pressure and volume at the
current time step ¢ respectively, V (b, 0) is the initial bubble volume,
while pt™°s is the atmospheric pressure equal to c¢? in LBM units.
Note that the bubble volume is simply the sum of the complement
of the fluid volume fractions ¢’s in the bubble region:

V(bit) = ) (1= $(x0)). (23)

bei

Handling bubbles thus needs to store the values used in Eq. (22) for
each bubble, and to indicate for every non-liquid node the index
of the bubble it corresponds to. Indices are updated at each time
step by referring to the previous neighboring indices so as to track
the motion of the bubbles. Merging and splitting of bubbles is even
more involved: it first requires to detect splits and merges based
on the connectedness of nodes of a given index, then to update the
initial volumes and pressures of the newly created bubbles. A serial
algorithm to achieve this task was proposed by Foley [1996] and
Bogner [2017], involving local flood filling algorithms and bipartite
graphs between consecutive arrangements of bubble indices. Alas,
this approach is not parallelizable and does not scale well with the
number of bubbles; moreover, it cannot accommodate thin-shell
obstacles in the fluid, which are particularly desirable in graphics.

HOME-FREE bubbles. In order to create an efficient bubble model,
we propose a new algorithmic approach to bubble tracking and
updates which can be easily implemented on GPUs and which lever-
ages the fact that LBM simulators advect a VOF value by at most
one grid node at a time, which facilitates bookkeeping of bubble
indices. First, we quickly check if some nodes switched from an
F type (fluid) to a G or I type (gas or interface) over the last time
step as it may mean either that the node just entered a bubble, or
multiple bubbles are merging; we determine which case it is by

Fig. 9. Ablation test for cut-cells. As discussed in Sec. 4.2, we ignore
cut-cell nodes during the CCL labeling phase. This simplification (top) only
slightly alters the visual results when applied to a thick obstacle like the
bunny in a dam break compared to the usual treatment (bottom), but now
allows for thin obstacles seamlessly and without computational overhead.
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simply storing and checking the indices of the nodes in the imme-
diate vicinity. Similarly, we check if nodes switched from a G or I
type to an F type as it may mean that these nodes left a bubble or
a bubble is splitting; again, a simple exploration of the 27 indices
immediately adjacent to the processed node allows us to find which
situation is happening, and the indices of the bubbles at play are
stored. The detection of either one of these cases triggers also a
connected component labeling (CCL) to identify all the bubbles in the
fluid — we use the parallel CCL from [Allegretti et al. 2019], which
employs a fast block-based union-find data structure to identify the
3D connected interface/gas nodes and mark all connected ones with
the same label. But unlike previous methods that go through the
(algorithmically painful) exercise of matching old labels with new
labels through bipartite graphs to be sure to properly track bubbles,
we proceed very differently from there on. For each grid node that
is of type G or I, we store both the current index i of the bubble it
belongs to, and also the previous index i* (note that this index is
set for all G/I nodes, since even nodes freshly covered by a bubble
know the previous bubble index of which they are now part due
to the earliest part of our algorithm explained above); and we also
keep all the (current and initial) volumes and (current) pressures of
all the bubbles from the previous time step, denoted as ij’ld, V;)")ld,
and p;’.ld respectively. We then update the volumes and pressures of
all bubbles in a way that does not require to know correspondences
between old and new indices. Le., after initializing all the current and
initial volume values to zero for all the identified bubbles, we go
through each G/I node x with new and old bubble indices i and i,
and perform the following volume updates (through atomic adds):

VP 4= (1= ¢, 1) piia/p™™. (24)

This approach, massively parallel by design, will gather all the
(current and initial) volumes of the current bubbles directly and
efficiently, even if each bubble has changed its index assigned by
the new CCL pass. Note that this update relies on accurate floating-
point operations to maintain the right volumes and pressures: we
thus use double-precision. Once all nodes are updated, we go over
each current bubble index and update its pressure via:

‘/i +=1- ¢(x’ t)a

Pi =patmosViO/Vi. (25)

Dealing with cut-cell nodes. While existing FSLBM techniques
do not allow for thin-shell obstacles, we can modify our approach
slightly to handle this common case in graphics. We follow the
cut-cell representation for thin shells in single-phase LBM [Lyu
et al. 2021]; that is, a grid node for which one (or more) of its links
intersect a boundary is marked as a cut-cell node — and we simply
ignore cut-cell nodes during the CCL labeling phase. This amounts
to considering the gas in a cut-cell region as being air at the atmo-
spheric pressure. While this allows the use of thin-shell obstacles,
it changes the treatment of grid nodes touching thick obstacles, as
they would be treated in the CCL instead of being skipped. How-
ever, we show in Fig. 9 that this small simplification that allows
for arbitrary obstacles does not generate visually noticeable differ-
ences for thick obstacles like a bunny in a dam break, validating our
algorithmic change. Moreover, this pressure approximation near
obstacles is actually more numerically robust as LBM is known to
generate small spurious fluctuations in pressure near boundaries.

ACM Trans. Graph., Vol. 44, No. 6, Article 266. Publication date: December 2025.
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Fig. 10. Water through porous material. When water flows through the porous obstacle, bubbles form and rise to the surface as the flow runs through the
complex tunnels and cavities, before exiting as liquid filaments and drops at the bottom.

Fig. 11. Ablation test for turbulence model. Using a sectional view of
the velocity field of Fig. 18 (where the comb is in grey), we see strong ringing
artifacts around small bubbles (green boxes) when no eddy viscosity is used
(left); the use of a turbulence model (right) removes these issues.

Turbulence model to tame small bubbles. When dealing with tur-
bulent flows, very small bubbles bring additional challenges: as they
often impose large pressures locally due to Eq. (25), strong ringing
artifacts in the velocity field can appear. Consequently, velocities
exceeding the CFL condition introduce errors in the advection of
small bubbles, generating erratic displacements and causing some
bubbles to disappear. These dispersive errors in the velocity field are
often dealt with numerically through the addition of a turbulence
model. We thus include eddy viscosity [Lesieur 1990] to all nodes
less than four cells away from a bubble to prevent these issues. In
practice, this means that we add to the usual fluid viscosity v an
eddy viscosity ve =4||S||F, i.e., the eddy viscosity is set proportional
to the Frobenius norm of the second velocity-based moment of the
fluid to counteract any sharp local changes in the flow. Fig. 11 shows
a sectional view for the velocity field from Fig. 18 with and without
eddy viscosity: with a turbulence model, ringing artifacts disappear,
and small bubbles do not behave spuriously.

4.3 Fluid-solid coupling
Another important part of any flow simulator is fluid-structure
interaction, also called coupling.

Existing FSLBM coupling. In FSLBM, fluid-solid coupling is often
handled via bounce-back [Ladd 1994]: for lattice edges crossing an
obstacle boundary (Fig. 13), streaming is modified to read

f(xt) = fi(x, t) — 6wip®u’ - cr. (26)
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in order to implement a “bounce” of the distribution function against
the obstacle and a transfer of inertia due to the motion of the solid
obstacle, where u* is the macroscopic velocity of the solid node and
p? is the local fluid density at s intersection node. However, FSLBM
uses the original bounce-back approach, which relies on nodes being
tagged as inside or outside moving solids at each time-step [Bogner
2017] and thus cannot handle thin structures (Fig. 13(b)). Moreover,
its first-order nature leads to spurious oscillations in turbulent flows.
To transfer the effect of the fluid motion to the obstacle, FSLBM uses
a moment-exchange formulation where a moment Aj; is evaluated
per lattice direction, and the coupling force and torque on the solid
is the sum of all these contributions; that is,

Fg = Zc ZL Aji(x), (27)
= Y (x—x)x ¥ Aji(x), (28)
xeCs i€Ls

where C; represents the set of all grid nodes adjacent to the solid s
(orange nodes in Fig. 13 (b)), Ls is the lattice direction set towards the
solid, while x, is the barycenter of the solid. Note that FSLBM does
not store a distribution function on gas nodes, so the gas pressure
estimated from the equilibrium function assumes a zero velocity
u,=0. Therefore, if Cs contains gas, interface, and liquid nodes, the
lattice moment Aj; is evaluated through:

Aji(x) = (" (1) ei= fi(x, 1) €i) px + 2£;*(pg, 0) € (1 = 6x), (29)
where a blending between the two phases is achieved through a
weight based on the local VOF value ¢,. Yet, similar to the bounce-
back case, thin obstacles cannot be handled with this approach;
moreover, Galilean invariance is not even preserved, which creates
spurious artifacts in turbulent flows. We remedy these issues next.

Cut-cell treatment. Inspired by the double-sided bounce-back ap-
proach proposed in [Lyu et al. 2021], we first mark the links inter-
secting a solid boundary surface as cut-cell links (Fig. 13(a)), and
any node containing a cut-cell link is marked as a cut-cell node
(Fig. 13(c) in green). We then apply the bounce-back only on fluid
and interface cut-cell nodes — not on gas nodes (nodes covered by
the solid obstacle in Fig. 13(c)). This cut-cell boundary treatment
naturally supports thin and non-watertight objects. We also incor-
porate the fluid-solid coupling treatment from HOME-LBM [Li et al.
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Fig. 12. 3D bubble drainage. After bubbles are nucleated inside the liquid, foam is formed and bubbles grow as the dissolved gas in the liquid slowly seeps
out. The drained liquid ends up at the bottom of the tank while a fairly regular lattice structure appears, as real-world bubble drainage examples (right) exhibit.

(a) (b) ()
Fig. 13. Cut-cell treatment of obstacles. A cut-cell link (a) is a lattice edge
(orange) intersecting the boundary of an obstacle, on which we store the
intersection point s; cut-cell nodes for the regular bounce-back approach
(b) are grid nodes that have cut-cell links (in orange); our double-sided
bounce-back treatment uses all the cut-cell nodes (in green) with cut-cell
links, even for those inside the obstacle.

2023b, Sec. 4.2]: the approximated distribution function from the
solid boundary point s (at the intersection of a cut-cell link and a
solid) that is streamed to a grid node x is reconstructed from Eq. (16)

using p=py, u=u’, and Sup =ujuj + (S[’;ﬂ - uﬁué)

Fluid-to-solid force exchange. To accommodate general obstacles,
we modified Eq. (29) with a central moment scheme for F/I nodes to
ensure Galilean invariance [Peng et al. 2016] through

A = (7 () (6 = u) = fi(x.0) (i = ") e 50)
+ (e = u) 0y, 0) — (e — ) f(pgs 0)) (1= ),
where f*(x, t) is reconstructed from Eq. (16) with the three velocity-
moments derived from the velocity of the obstacle as described
above. Finally, the total force remains expressed as Eq. (27), while
the total torque is changed to:
B = Z (xs _xc) X Z Aji(x)’ (31)

x€Cs i€Lg
where C; represents the set of all cut-set nodes (Fig. 13(c) in green),
and x; is an intersection point between the link and the obstacle
boundary (point s in Fig. 13(a)), instead of Eq. (28) which used the
current grid node. Note that in our implementation, we re-express
Egs. (27), (30) and (31) by noticing that fieq(pg, 0) = w; = w; and
¢;=—c;, which yields the following expressions:
Aji = (7 (3, 1)+ fi(x, 1) = 2wi) ci— P (fi (3, ) — fi (3, 1) )’ + 2¢7w;,
Aji = (£ (x,0) + fix, 1) = 2wi)er = (£ (x. 1) = fi(x. ))r’,
Fp= Y Aji, =23 (xs—x)x X Aj. (32)

x€C}ieLs xeC} i€Lg

where now the node set C;, only includes fluid and interface cut-cell
nodes, thus simplifying the evaluation since gas nodes are skipped.

Fresh/dead nodes. Finally, we follow the approach of Li and Des-
brun [2023] to detect “fresh” and “dead” cells, i.e., cut-cell nodes
which are suddenly not covered by an obstacle and cut-cell nodes
which become covered by an obstacle respectively. For dead nodes,
we simply tag the node as a gas node. Fresh nodes require more
care. Bogner [2017] proposed a method based on the neighboring
non-solid cells: fresh nodes are treated as fluid cells if there are no
gas or interface nodes around; otherwise, fresh nodes are tagged as
gas nodes. However, our tests show this direct assignment based
on neighbors is too drastic: this strategy often causes the liquid to
stick to moving obstacles, leading to obvious visual artifacts. We
propose a new strategy to “ease in” the fresh nodes into the simu-
lation. When a node is detected as fresh, we first set the local VOF
value ¢ by averaging the neighboring nodes’ VOF. If the ¢ is lower
than a threshold 0, the fresh node is tagged as gas; otherwise, it is
tagged as a fluid node, and the density p is interpolated from the
neighboring fluid and interface nodes, while the velocity u is taken
from the nearby solid boundary which triggered the change of this
node’s status, and the second-order moment S is approximated via
Sap = uglig, sO that a distribution function can be reconstructed
for this new fluid node. Note finally that we make our threshold
0 depend linearly on the velocity of the solid objects: if the solid
object moves fast, the threshold 6 should be set to a large value
(0.95) since the fresh nodes cannot be filled quickly with fluid due to
the large relative velocity; on the contrary, if the solid object moves
slowly, a small threshold 0 is used (0.3), to model the fact that the
fluid can fill the fresh nodes quickly. As Fig. 22 demonstrates, this
treatment removes the usual sticking artifacts of previous methods.

4.4  Foam modeling

Foam, where many gas bubbles are surrounded by thin films (lamel-
lae) of liquid, is a highly recognizable phenomenon often seen on
beaches and coffee cups. Capturing this phenomenon is impracti-
cal for diffuse phase models such as [Li et al. 2022], as the proper
handling of thin films would require an extremely fine grid. Ataei
et al. [2021] showed that one can model this complex phenomenon

ACM Trans. Graph., Vol. 44, No. 6, Article 266. Publication date: December 2025.
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Fig. 14. Dam break against a small wall. Initializing a water column next to a small horizontal parallelepiped-shaped obstacle, the resulting dam break flow
hits the low wall hard, which generates large splashes and many bubbles until the water comes to rest.

Fig. 15. Water wheel. In this two-way coupling example, water flows down
onto a wheel, making it spin. Our approach evaluates the forces involved in
this interaction five times faster than the work of Bogner [2017].

Fig. 16. Comparisons on 2D foam. We test our foam modeling on bubble
nucleation in 2D at Re = 100, 000. While [Ataei et al. 2021] crashes quickly
(left), our solver generates the expected foaming drainage where the liquid
flow within the foam is driven by gravity and capillarity (right). Foam
lamellae do not persist without our foam-ossifying viscosity (middle).

with FSLBM by solving an advection-diffusion equation for the con-
tent of dissolved gas in the liquid and modeling disjoining pressure
which arises from the attractive interaction between two bubbles.
We revisit and adapt this approach to our framework next to make
it robust, once again, to more turbulent cases.

Advection-diffusion equation. Ataei et al. [2021] proposed to model
advection and diffusion of a field representing the dissolved gas con-
centration ¢ (in terms of mass fraction) using

L4V (g =V (49) +g (53)
where q is a source term responsible for gas generation due to, for
example, chemical reactions, and Hg is the diffusion coefficient. This
PDE is solved through LBM discretization as well, using another
distribution function g on a D3Q7 lattice structure this time (with
lattice directions d;, weights wg =1/4 and W? =1/8 forie{1,...,, 6},
with speed of sound ds = % see Fig. 5) as it does not require the same
accuracy as for the fluid. The lattice Boltzmann equations for the
distribution function values g; then read

gi(x +di,t +1) —gi(x,t) = Q? + qi, (34)

where ¢;=w/q and Q7 = —(g; - g;%) /1, for the BGK collision model
(sufficiently accurate for this advection-diffusion simulation) where
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the relaxation time is linked to the diffusion constant via 7, =3p,+ %
As usual, the zeroth-order moment of the distribution function g
allows for the reconstruction of the gas concentration ¢, i.e.,

6
p(x.t) = ) gi(x D). (35)
i=0

l
Moreover, from the local macroscopic fluid velocity u and the local
concentration ¢(x, t), the equilibrium distribution g°? can be well
approximated with a first-order Maxwell distribution:
gieq(x, 1) =wip(x,t)(1 +di-u/d52). (36)
Ataei et al. [2021] also proposes to account for the gas diffusing into
the bubble volumes by adding to all bubble initial volumes:

V= s 2 (2 Lo+ o) = i) (37)

x€b; x+c;eF
—o(xD[9(x 1)~ (x - 1)]),
where ViO is the initial volume of bubble b; as discussed in Sec. 4.2.
Finally, the concentration of gas in a bubble interface is known to
obey Henry’s law [Henry 1832] in foams, which expresses a linear
relationship between gas concentration and bubble pressure:
o(x,t) =kgpg. Vx €1, (38)
where kg is Henry’s law constant and py is the bubble pressure.
One can thus use this property as a way to set boundary conditions
similar to Eq. (11) for the free surface treatment through:

gr (xs t) = g?q((p(x’ t): u) + 9§q(¢(x> t)’ u) - gi(x’ t)~ (39)
Disjoining pressure. A disjoining pressure II has also been pro-
posed to stabilize the lamellae between bubbles, based on the theory
of thin liquid films, in order to allow the formation of foam [Der-
jaguin and Churaev 1978]. This disjoining pressure shows a linear
dependence in the distance d between two interfaces of bubbles and
starts acting from the maximum distance dqy (typically set to 4
grid-cell widths) to minimize the variation of Gibbs free energy for
two interfaces [Huber et al. 2014], yielding:
0 ifd>dnax
= {k,,(l ~dfdax) £d < dpax,
where k, is the disjoining pressure strength. This disjoining term
gets added to the pressure and surface tension in Eq. (12) to become:

Py = (pg = 2yx(x) = ID)/c}. (41)

New foam-ossifying treatment. However, the foam model above
can only handle low Reynolds number foam cases and will crash in
turbulent cases, as Fig. 16 (right) at Re = 100, 000 demonstrates. In-
creasing surface tension is sometimes advocated to further stabilize
bubble shapes, but we found in our experiments that high surface
tension has a tendency to drastically slow down small bubbles due
to the large surface tension forces overpowering the bubble’s mo-
tion — thus adversely affecting the simulation away from foams.

(40)
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Fig. 17. Impinging jets. Our HOME-FREE solver exhibits similar patterns of thin films and chain-link shaped streams for impinging jets (here, for three
decreasing initial velocities) when compared to real-world impinging jets (black-and-white photos from Bush and Hasha [2004] and Pruitt et al. [2024]).

Thus, we make specific alterations to our solver to improve foam
modeling without affecting bubble dynamics. First, we employ the
D3Q7 Central-Moment-Relaxation (CMR) collision model from [Li
et al. 2022] to improve the accuracy and stability of Eq. (34), where
the collision operator is expressed as:

QI = ~(M9) ' RIMY (g - ) + (M9) (I - 1RDQ,  (42)
where the matrix MY transforms the distribution function g and the
source term g; into central-moment space with Q =M9q, which en-
forces Galilean invariance. The diagonal relaxation matrix, written
RI=diag(1,1/(4g + %), 1/ (4ug+%), 1/ (4p14+%), 1,1, 1), has separate
relaxation rates of each moment, reducing the instabilities that the
BGK model creates. The closed-form expressions of the coefficients
of M9 = (M, Mg, Mg, MZ, M‘Z, Mg, M‘Z)T were given in [Li et al. 2022],
and are expressed as

M =(1111,111)7,
- - - -2 =2
M? = di,x: MZ = di,ys Mg = di,z, MZ = di,x - di,y’
-2 =2 -2 =2 =2
M!=d,, -d;,, M{=d;, +d,, +d,.
where Ei,(s =(d;—u) 5, with i €{0, ..., 6} being the lattice index and
d€{x,y, z} the coordinate. Second, we introduce a local viscosity
vy for all nodes less than six cells away from bubble interfaces. This
helps with the ossification of bubble lamellae but does not affect the
rest of the flow. Without this foam-ossifying viscosity, foams will
not keep their structure, collapsing quickly at such high Reynolds
numbers (Fig. 16). Finally, we locally adjust the surface tension y

based on the disjoint force value II through

y=II==0)?y : Yoss, (43)
i.e., we use a normal surface tension coefficient y if no disjoint pres-
sure is happening locally (that is, for free-moving bubbles), but help
foam ossification through a higher surface tension coefficient yoqs.
Note that one can also modify this switch to include a condition re-
garding the bubble size if one wants to control, e.g., the preservation
of bubbles of a certain size range if needed.

ALGORITHM 1: Pseudocode of our HOME-FREE solver
Data: ¢, p, u, S, ¢, q, g, flag
Result: Simulation sequence
t «— 0;
Provided ¢, ¢ p, u, q and flag, initialize the velocity moments S and
the distributions g in advection-diffusion;
while t < T do
1: ResetCutCell() [Sec. 4.31;
2: ComputeDisjoinPressure() [Sec. 4.4, Eq. (40)];
3: Streaming and apply free-surface boundary conditions
[Sec. 3.1, Eq. (11)];
4: Compute two-way force [Sec. 4.3, Eq. (32)];
5: HOME collison() [Sec. 4.1, Egs. (18)-(??)];
6: HOME-FREE bubble update [Sec. 4.2, Egs. (24), (25)];
7: Fresh/dead nodes update [Sec. 4.3];
8: Advection-Diffusion() [Sec. 4.4, Egs. (34)-(39)];
t—t+1;

end

5 Results

We now go through our tests and results to demonstrate the mul-
tiple benefits of our approach. We cover a number of simulation
experiments with our solver, including bubbles, foam, and inter-
actions with solid objects, as well as comparisons with existing
methods and real-world experiments. We also provide various ab-
lation studies to experimentally demonstrate the efficacy of our
contributions. Note that our implementation is publicly available at
https://github.com/qingxu-thu/Home-FSLBM.

5.1 Implementation details

We implemented our kinetic free-surface solver in C++ and CUDA,
using a structure-of-arrays (SoA) data structure to store two copies
of 10 variables (the HOME velocity-moments) per grid node in order
to allow for time integration (see Alg. 1). For curvature estimation
of the interface, we follow the PLIC implementation of [Lehmann
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2019], which relies on a Parker-Youngs approximation for the normal
[Pohl 2008]. We leverage the CCL implementation from [Allegretti
et al. 2019; Bolelli et al. 2020; Bolelli 2023] with a block size kernel of
8x8x4 and mark the labels in a sequential order. Bubble volumes are
computed in double precision to ensure accuracy; but the amount
of bubbles remains smaller than the number of grid nodes, so this
format does not incur a large memory burden. For intersection
detection through cut-cell links, we follow the approach of [Li and
Desbrun 2023] by first constructing a bounding-volume hierarchy
tree structure for the 3D mesh model on the GPU; we also adopt cut-
cell flags and bounding boxes to accelerate link-mesh intersection.
For the disjoining pressure, we use the tracing method mentioned
in [Ataei et al. 2021] with a Parker-Youngs approximated normal;
we then trace along the normal to search and identify whether there
is another bubble around. Conversion between physical units and
LBM units follows the procedure described in the supplementary
materials of Li et al. [2020], with the iteration counts chosen to
correspond to a frame rate of 3—105. All results were run on NVidia
GeForce RTX 3090 GPU cards with 24GB of memory. We also used
GPUs to render the resulting interface mesh using [van Bergen
2023] and Cinema 4D; note that after extracting the sharp VOF
interface, we perform a slight Laplacian smoothing and remesh it
with Blender [Blender Online Community 2018] to reduce aliasing
artifacts. Detailed statistics, including timings profiled with Nsight,
parameters, and other setups are presented in Tab. 1. It is also worth
noting in Tab. 1 that we only utilize the foam-ossifying viscosity v¢
in Figs. 6 and 12 to better stabilize complex membrane structures
and foam dynamics at high Reynolds numbers.

5.2 Comparisons

We first provide comparisons to current state-of-the-art solvers,
before providing further validation of our approach through com-
parisons with real-life experiments.

Comparison with diffuse-interface LBM solvers. In order to evalu-
ate how our sharp-interface free-surface solver compares to existing
diffuse-interface multiphase LBM solvers, we compare our approach
to [Li et al. 2022] on their example of the water dam break through
a thin “comb” structure in Fig. 18. with the same resolution, gravity
and viscosity parameters. The water flows through the interstices
of the comb, causing large splashing and many bubbles. We observe
that our free-surface simulation flows more freely through the thin
structures while the fluid from [Li et al. 2022] is slowed down due to
its non-sharp interface. Moreover, our method generates far more
bubbles and splashing with more turbulent details, while the multi-
phase solver seems to introduce numerical viscosity in comparison
due to its diffuse encoding of the phase. Perhaps more importantly,
our solver performs this animation sequence two times faster and
uses only 60% of the memory size required by the multiphase solver,
proving its efficiency. For a smaller resolution, our solver still cap-
tures more turbulent details and bubbles than [Li et al. 2022], this
time nearly 4.4 times faster and for only 25% of the memory usage.
We can also compare to non-kinetic solvers, as this same example
was used in [Chen et al. 2020b]: while they report 90 sec/frame for a
resolution of 64x64x32 with a GeForce GTX 1080Ti card, we achieve
31 sec./frame on a RTX 3090 card for a resolution of 400x400X200.
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Memory usage (p,u,S) cutcell flag ¢ bubbleinfo mass f n F total

Ours 20 1 1 2 3 2 0o 0 0 29
[Li et al. 2022] 5 1 1 1 0 0 34 3 3 48

Fig. 18. Comb dam. Compared with the two-phase solver [Li et al. 2022]
(top) which is twice slower and uses 1.7 times as much memory as ours for
the same resolution (bottom), our solver captures much smaller bubbles due
to its sharp-interface representation. For a lower resolution (middle), our
solver also shows finer fluid details while being now 4.4 times faster for 4
times less memory use than [Li et al. 2022]. Note that bubble info represents
the amount of data for bubble indexing, CCL, and merge detection.

The use of a kinetic solver thus brings orders of magnitude speed-up,
allowing for obviously far more fluid details in the simulation.

Comparison with real-world impinging jet. To better characterize
the performance of our method, we also compare the results of our
HOME-FREE solver against real-world impinging jets for both vis-
cous and turbulent scenarios. We simulate two jet streams colliding
with different surface tension and viscosity coefficients to explore
the different shapes of the resulting jet as suggested in [Bush and
Hasha 2004]. For low Reynolds number (Re=80) and low Weber num-
ber (We=57.6) as in Fig. 17 (right), we observe a chain link forming,
where the stream is twisted due to the influence of surface tension
and high viscosity. If we increase the Weber number (We=136.5)
and the Reynolds number (Re=150), we observe in Fig. 17 (middle)
an open rim with a thin layer of liquid that breaks up under the in-
fluence of gravity and surface tension. In Fig. 17 (left) showing even
higher Reynolds and Weber numbers (Re=1,280 and We=20,480),
we now observe a very turbulent flapping sheet phenomenon, with
a periodic impact wave and a periodic splashing pattern. For each
example, a snapshot of our result is compared with a real-world
experiment for similar physical parameters taken from [Bush and
Hasha 2004; Pruitt et al. 2024]. Compared to other published nu-
merical methods such as [Da et al. 2016], our results exhibit liquid
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Table 1. Statistics. All examples timed on a NVIDIA RTX 3090 for a frame representing 1/30s.

Figure Resolution Sec./frame  Iters/frame v Y(, Yoss) kx Ve vF q
Fig. 1 600 X 300 X 300 58.1 320 0.0001  0.0002,0.004  0.032  4||S|lF N/A 0
Fig. 2 200 X 400 X 200 16.4 320 0.0001 0 0 N/A N/A  N/A
Fig. 3 600 X 300 X 300 58.1 320 0.0001  0.00003,0.0002 0.032  4||S[lFr N/A 0
Fig. 4 400 X 300 X 400 80.6 320 0.0003 0 0 0.8]ISllr N/A N/A
Fig. 6 400 X 400 X 400 130.6 240 0.0001 0.005 0.032 N/A 0.13  0.00002
Fig. 7 250 X 300 X 250 13.2 100 0.0001 0 0 N/A N/A  N/A
Fig. 9 400 X 200 X 400 26.1 320 0.0001 0 0 N/A N/A  N/A
Fig. 10 200 X 400 X 200 9.5 320 0.0001 0 0 N/A N/A  N/A
Fig. 12 300 X 600 X 200 46.8 320 0.0001 0.005 0.04 N/A 0.2 0.00003
Fig. 14 400 X 200 X 200 14.5 320 0.0001 0 0 4||S|lF  N/A  N/A
Fig. 15 250 X 300 X 250 8.4 333 0.0001 0 0 N/A N/A N/
Fig. 17 (left) 200 X 400 X 400 35 320 0.003 0.0001 0 N/A N/A  N/A
Fig. 17 (median) 200 X 400 X 400 3.2 320 0.012 0.001 0 N/A N/A  N/A
Fig. 17 (right) 200 X 400 X 400 2.9 320 0.017 0.003 0 N/A N/A  N/A
Fig. 18 ([Li et al. 2022]) 400 X 400 X 200 57.6 320 0.0001 0 N/A N/A N/A  N/A
Fig. 18 (same res.) 400 X 400 X 200 31.2 320 0.0001 0 0 4||SllF  N/A  N/A
Fig. 18 (lower res.) 300 X 300 X 150 13.0 320 0.0001 0 0 4)|SllF  N/A N/A
Fig. 19 512 X 120 X 120 0.04 20 0.1 0.1 0 N/A N/A  N/A
Fig. 20 400 X 300 X 400 78.6 320 0.001 0 0 N/A N/A  NA
Fig. 21 400 X 120 X 1200 36.2 133 0.0001 0 0 N/A N/A  N/A
Fig. 22 250 X 300 X 250 113 100 0.0001 0 0 N/A N/A  N/A
Fig. 23 300 X 300 X 300 30.1 250 0.0001 0 0 N/A N/A  N/A

Fig. 19. Plateau-Rayleigh instability. Our HOME-FREE solver simulates
a 3D Plateau-Rayleigh instability for a thin stream of fluid (top) getting
thinner, before breaking into droplets (bottom). Ours (left) reproduces the
real-world experiments provided by Hagedorn et al. [2004].

sheets, ligaments and splashing more in line with the experiments,
especially for high Reynolds numbers. Note also that the original
FSLBM is unable to simulate the most turbulent case without crash-
ing. This demonstrates the experimental accuracy of our method
at different regimes of viscosity and surface tension. Finally, the
non-kinetic approach of [Chen et al. 2013] (which used adaptively
refined grids) required timings of the order of two months on 48
3-Ghz processors, while ours only take 3 seconds per frame.

Comparison with real-world bubble drainage. We also provide
in Fig. 12 a 3D version of Fig. 16, showing foam growth as the
water is drained towards the bottom of the tank. The foam shows
a regular lattice structure, exhibiting very close similarities with
real-world drainage structures [Ataei et al. 2021; Saint-Jalmes 2006].
We set viscosity at 1e-4 (LBM unit), with a local viscosity v around
bubble structures set to 2e-1. We perform bubble nucleation through
Poisson sampling [Ataei et al. 2021] and use a constant source
q=3e-5 in the advection-diffusion equation to force foam growth.

Comparison for Plateau-Rayleigh instability. We test our approach
on the surface-tension driven Plateau-Rayleigh instability: a thin
stream of water gets increasingly thinner and, at some point, breaks
up into individual droplets. We use a cylinder of fluid (9 times as long
as its radius) with an initial sine wave perturbation of magnitude 0.05
times the radius [Breslouer 2010]. We use a viscosity of 0.1 in LBM
units and a surface tension coefficient of 0.1, with no initial velocity
and no gravity. After a few timesteps, the perturbation grows before
the cylinder breaks up into several droplets, in agreement with the
experiment results found in [Hagedorn et al. 2004].

5.3 Bubbles and foam phenomena

Bubbles and foams in free-surface simulation are particularly chal-
lenging at high Reynolds numbers due to the fast motion of the
complex structure of the free surface. We now review various ex-
amples of bubbles and foam phenomena, including foam, bubbles,
and bubble rings, to show the performance of our solver in these
difficult scenarios that FSLBM cannot handle.

Glugging. Fig. 2 shows that our solver captures glugging using
the typical two-chamber setup with an opening in between. The
water from the top chamber falls into the bottom chamber, and air
from the bottom container rises up through the opening to create
the usual bubbling and glugging seen in water coolers. Even with
a fairly low resolution, splashing shows many details and bubbles
travel around for a while. Again, this turbulent flow with bubbles
could not be performed with regular FSLBM.

Pouring and foaming. Fig. 3 shows water being poured into a tank
with a high velocity, which stirs the water already in the tank and
generates numerous bubbles and foam. Note that this case uses a
high Reynolds number (Re=300,000), impossible to capture with
FSLBM. A small surface tension coefficient is used as well as a
disjoining pressure, while the advection-diffusion equation uses no
source term. This sharp-interface simulation captures fine details of
the foam and associated splashing. A similar setup was also used
in [Karnakov et al. 2022, Fig. 6], and their simulation took about

ACM Trans. Graph., Vol. 44, No. 6, Article 266. Publication date: December 2025.



266:14 « Wanget al.

Fig. 20. Leapfrogging bubble rings. HOME-FREE succeeds in capturing
bubble ring leapfrogging effects, creating at times a veil of bubbles.

24 hours using 13,824 cores on the Piz Daint supercomputer for a
resolution of 768384 %384 grid; instead, ours took 36 mins for a
resolution of 600x300x300 to get similar visual results.

Bubble rising. Fig. 6 shows bubbles rising in a tank of water. The
bubbles are generated at the bottom of the tank, rising and growing
until they end up floating on top of the water. The bubbles form a
foam-like structure, with many fine lamellae which stay robustly
in place due to our locally increased viscosity and surface tension.
Here again, we use a rather high Reynolds number (Re = 120,000)
to simulate a realistic bubble rising speed. A surface tension with
Weber number We = 72 is also used to keep a circular shape, together
with a disjoining pressure to repulse the bubbles from each other.
The advection-diffusion equation uses an extra chemical source
term (q = 2e-5) to induce slow bubble growth.

Bubble ring. We also demonstrate the ability of our method to
deal with complex bubble phenomena in Fig. 4 by simulating the evo-
lution of a bubble ring in a tank of water. The rings rise up, deform,
split, and reconnect. After connecting, a small bubble is ejected due
to the rapid motion of the resulting bubble ring. Compared to previ-
ous bubble ring simulations in [Padilla et al. 2019; Xiong et al. 2022]
for instance, we use a much higher Reynolds number (Re=26,000).
We simply initialize the flow with a curl-free velocity field tangent
to a torus with air inside the torus; our free-surface solver manages
to maintain this vortical structure in time.

Bubble leapfrogging. We also show an example of bubble leapfrog-
ging in Fig. 20. Two bubble rings are initialized, and the bubbles
end up leapfrogging each other twice, before finally merging into
a larger one. Interestingly, the first ring splits into a veil of tiny
bubbles before merging into the second ring. Similar to the bubble
ring case, we use a high Reynolds number (Re = 12,000), with no
foam-ossifying viscosity.

5.4 Fluid interaction with static objects

We also tested our approach in the presence of static obstacles.

Water through porous material. To test our method on complex
geometry, we simulate the motion of water as it flows through
a porous structure in Fig. 10. Initially, bubbles from the porous
material rise up as in the glugging example while the water begins
to make its way through the various openings; then the water runs
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Fig. 21. Car splashing. As a car moves through a large body of water fast,
it generates bubbles and splashes in front of the car, while the wake formed
behind the car exhibits turbulence.

through the complex tunnels and cavities, before exiting as liquid
filaments and drops at the bottom, as expected.

Dam break on obstacle. We tested the effects of water on an obsta-
cle in the usual dam break flow problem. We initialize a horizontal
parallelepiped obstacle next to a water column, so that the dam break
flow hits the obstacle and generates large splashes and bubbles. Fig.
14 shows the water accumulating behind the obstacle leading to
complex turbulence with small bubbles forming and breaking before
the water slowly comes to rest.

Water drop. We also provide a real-time test for our HOME-FREE
solver in the accompanying video: we simulate a ball of water falling
into a tank of water, generating splashes. Our simulation runs at
20 fps (50 ms/frame) for a resolution of 200 X 100 X 200. We do
not include bubble modeling, and viscosity is set to v = 5e-5 to
exhibit turbulent effects. This result shows promise for real-time
applications on consumer-grade GPU cards.

5.5 Fluid interaction with moving object

We demonstrate one-way and two-way interactions next.

Car splashing. Fig. 21 shows a car moving through a large body
of water. In this one-way coupling simulation, bubbles and splashes
are clearly visible in front of the car, and turbulence forms behind
the car. We can also view splashing caused by the car’s skidding.

Bunny drops. We also demonstrate two-way coupling, where two
bunnies (one heavy, one light) are dropped in a tank of water in
Fig. 7. The bunnies hit the water with a splash, after which the
heavy bunny sinks to the bottom of the tank, surrounded by bubbles
trapped by the water being displaced rapidly during the fall, while
the light bunny bobs about as it floats on the water surface. Note
that the bubbles generated from the heavy bunny form two bubble
rings, which gradually enlarge and rise up to the surface.

5.6 Ablation study

Finally, we perform ablation studies to further illustrate the effects
of our several alterations to FSLBM. We previously showed the



effectiveness of our HOME-based solver over a traditional FSLBM
solver in handling turbulence (Fig. 11), in foam growth (Fig. 16),
and demonstrated in Fig. 9 that our simplified bubble treatment
is effective. We now discuss the advantages of our cut-cell based
two-way force computation and fresh-node update in more details.

Two-way force computation. As explained in Sec. 4.3, we adopt
Eq. (32) instead of Eq. (29) to compute two-way forces. Our approach
will thus be (at times, much) more efficient than [Bogner 2017] when
there is a small amount of fluid in the computational domain and a
high cut-cell node proportion. For instance, in the case of the water
wheel fall in Fig. 15, we profiled our two-way simulation kernel
(used in steps 3,4, 5 of Alg. 1): our kernel requires 2.4 ms, while our
implementation of [Bogner 2017] takes 11.9 ms, about 5 times slower
than our approach. Even for scenes with high water occupancy such
as the single bunny drop in Fig. 22 (bottom), our method is more
efficient, with only a 6% improvement. We note that our approach
is also more stable and less sensitive to the intersection truncation
error due to fewer link-mesh intersection operations.

Handling fresh nodes. Our treatment of fresh nodes drastically
improves simulations. Compared to [Bogner 2017] which sets fresh
nodes as fluid cells, our solver does not exhibit any “sticking” arti-
facts on moving objects as demonstrated in Fig. 23. Compared to [Li
and Desbrun 2023] which sets fresh nodes as gas cells this time, our

Fig. 22. Ablation test for fresh cell treatment . If we replace our fresh
cell handling (bottom) with [Li and Desbrun 2023] (top) in a splashing bunny
simulation, spurious bubbles appear since fresh cells are set as gas cells.

Fig. 23. Ablation test for fresh cell treatment Il. If we replace our fresh
cell handling (bottom) with [Bogner 2017] (top) in a rotating propeller
simulation, we observe a large amount of water adhering to the solid object
(red boxes) since fresh cells are initialized as fluid cells.
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solver does not generate spurious bubbles as shown in Fig. 22 where
a bunny drops into water: in the last frame, there are fewer than
10 bubbles in our result (which quickly disappear afterwards), but
setting fresh nodes as gas cells ends up with over 70 small bubbles
right against the bunny, making the simulation overly bubbly.

6 Conclusion

In this paper, we developed a kinetic free-surface fluid solver us-
ing a VOF-based sharp-interface encoding. By fixing a series of
shortcomings of the original FSLBM, our resulting HOME-FREE
LBM approach ends up rivaling with state-of-the-art kinetic diffuse-
interface based fluid solvers in accuracy and stability, but allows for
much finer fluid interface details for a given grid resolution. Our
approach is thus at least two times more efficient than prior art, and
can now exhibit not just more bubbles, but even the formation of
persistent bubbles that stick to each other through surface tension
or other complex foam behavior with very thin lamellae.

Limitations and future work. Given the complexity of bubble and
foam simulation, our method is certainly not without limitations.
First and foremost, wetting has not been treated in this work. We
believe that incorporating wetting boundary conditions by changing
the curvature estimation based on methods such as [Popinet 2009;
Bogner et al. 2016] is possible, but requires further investigation.
While we managed to handle small bubbles more robustly than the
original FSLBM, our VOF-based approach cannot capture lots of
tiny bubbles (being limited by the grid cell size); augmenting our
approach with Lagrangian particles, potentially inspired by [Wret-
born et al. 2025], could be a practical solution. Since our approach
offers control over the size and persistence of bubbles, it would also
be valuable to provide an intuitive interface to guide a user towards
a desired behavior of the simulated flow (e.g., for the water pouring
example in Fig. 1 vs. Fig. 3). Finally, we may explore different mesh
extraction techniques to extract the sharp interface for rendering
purposes, like Poisson reconstruction or dual contouring instead of
relying on marching cubes followed by smoothing and remeshing.
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