
Solver-in-the-loop approach to closure of shell models of turbulence

André Freitas,1, 2, ∗ Kiwon Um,2 Mathieu Desbrun,3 Michele Buzzicotti,1 and Luca Biferale1

1Dept. Physics and INFN, University of Rome “Tor Vergata”, Italy
2LTCI, Télécom Paris, IP Paris, France

3Inria and École Polytechnique, IP Paris, France
(Dated: April 8, 2025)

This work studies an a posteriori data-driven approach (known as solver-in-the-loop) for sub-
grid modeling of a shell model for turbulence. This approach takes advantage of the differentiable
physics paradigm of deep learning, allowing a neural network model to interact with the differential
equation solver over time during the training process. The closure model is, then, naturally exposed
to equations-informed input distributions by accounting for prior corrections over the temporal
evolution in training. Such a characteristic makes this approach depart from the conventional a
priori instantaneous training paradigm and often leads to a more accurate and stable closure model.
Our study demonstrates that the closure learned via this a posteriori approach is able to reproduce
high-order statistical moments of interest also in closures of high Reynolds number turbulence.
Moreover, we investigate the performance of the learned model by experimenting with the effect of
unrolling in time, which has remained for the most part unexplored in the literature. Finally, we
discuss potential extensions of this approach to Navier-Stokes equations.

I. INTRODUCTION

Three-dimensional turbulence is a complex, multiscale
phenomenon that arises when the nonlinear transport
terms in the Navier-Stokes (NS) equations dominate over
viscous damping. The behavior of turbulent flows is gov-
erned by the Reynolds number, Re = u0l0/ν, where u0

represents the characteristic velocity, l0 the typical length
scale, and ν the kinematic viscosity. At high Re, turbu-
lence exhibits a range of non-trivial behaviours, including
non-Gaussian statistics and intermittent dynamics [1]. In
3D turbulence, there is a nonlinear energy cascade, from
large to small scales, where it is eventually dissipated
through viscous friction [2].

Accurately resolving 3D turbulence is extremely com-
putationally expensive. The degrees of freedom (DOF)
scale as a power law of the Reynolds number, #DOF ∝
Re9/4, so studying extremely high Reynolds numbers
numerically through primitive Navier-Stokes (NS) equa-
tions is often not possible. Modeling is needed. A
central challenge in turbulence modeling, which has at-
tracted much interest from both theoretical and applied
researchers, is Large Eddy Simulation (LES) subgrid
scale (SGS) modeling [3–6]. LES reduces the degrees
of freedom encountered in a fully resolved simulation by
placing a filter at a certain wavenumber, kc, and only re-
solving for k < kc. This means that the so-called subgrid
scales, k > kc, need to be modeled. In contrast to what
happens in other PDEs set-ups for fluids, such as, e.g.,
1D Kuramoto-Sivashinsky equations, 1D Burgers equa-
tions, and 2D Navier-Stokes equations, modeling turbu-
lence in 3D is theoretically more challenging because of
the strong chaotic, out-of-equilibrium and non-Gaussian
nature of high wavenumbers, sub-grid statistics, result-

∗ andre.freitas@roma2.infn.it

ing in multifractal energy dissipation, and extreme sub-
grid energy transfer fluctuations [1]. Furthermore, from a
more theoretical and fundamental point of view, the pres-
ence of anomalous scaling laws implies a breaking of self-
similarity and the existence of a nontrivial dependency
of the sub-grid model from kc [7, 8]. In many applied
cases, the cutoff wavenumber cannot be fixed and must
be varied (increased) to improve fidelity of the resolved
scale behavior. As a result, a comprehensive theoreti-
cal framework defining the statistical properties of the
subgrid scale model in 3D turbulence is still missing.

In this paper, we focus on one specific theoretical as-
pect of the LES approach, connected to the sub-grid
scale anomalous statistical behavior. In order to do that,
we need to study the effects of modeling when the kc
falls well inside the inertial range, and the nonlinear en-
ergy transfer is strongly non-Gaussian. In contrast to
the more established phenomenology-based models [3],
we will use a Machine Learning closure, inspired by the
complexity of the modeling task and by recent promising
results [9–14]. The main goal is to attack with high accu-
racy questions connected to the fidelity of the model to
reproduce extreme SGS energy transfer events. No model
is perfect, and one expects that extreme rare events are
more sensitive to biases. The need to have high kc (to
observe non-Gaussian fluctuations) and very large statis-
tics (for the data-driven approach) makes this study im-
possible in 3D turbulence, where most of the Machine
Learning LES are limited to very small resolution (up to
1283 or 2563) and, consequently, by a very small depar-
ture from quasi Gaussian statistics. The only alterna-
tive framework where to study these questions is using
shell models of turbulence, where only a few degrees of
freedom are preserved for a set of logarithmically equi-
spaced wavenumbers, kn = k0λ

n, where λ = 2 ususally
[15]. Models such as the Sabra model [16] have success-
fully replicated key statistical properties of turbulence,
including intermittency, strongly non-Gaussian fluctua-

mailto:andre.freitas@roma2.infn.it

2

tions, and anomalous scaling exponents. Shell models
have been successfully used to study statistical properties
of many turbulent fluid configurations, including rotat-
ing turbulence [17], thermal convection [18], superfluids
[19], MHD turbulence [20], helical turbulence [21], and
passive scalars [22], to cite just a few. Shell models have
also been used to study fundamental properties of NS
equations, connected to spontaneous stochasticity [23],
effects of thermal noise [24], existence of solutions [25],
instantons [26], and many more.

In this paper, we develop a Deep Learning based SGS
closure for shell models of turbulence. Our approach em-
ploys an a posteriori training technique known as solver-
in-the-loop. This method incorporates a differentiable
solver for the governing equations of a physical system
directly into the learning process of a deep neural net-
work tasked with learning the closure. We demonstrate
that this approach yields closures that are more stable
and perform better than those trained using the tradi-
tional static a priori and instantaneous paradigm. Ad-
ditionally, we investigate the concept of the ideal time in
the loop, a critical aspect that is often overlooked in the
literature employing this methodology, and attempt to
relate it to a relevant physical quantity.

In Section II, we review prior research on subgrid-scale
modeling in LES, emphasizing machine learning closures.
We pay particular attention to studies involving shell
models and those utilizing differentiable solvers or un-
rolled training. In Section III, we discuss the closure of
turbulence shell models within the LES framework and
describe our solver-in-the-loop approach to closure in de-
tail. In Section IV, we present and discuss the outputs of
our trained models. Finally, Section V summarizes our
findings and outlines potential future research directions.

II. RELATED WORK

Machine learning, and deep learning in particular, has
seen wide adoption in fluid dynamics, as highlighted in
several comprehensive reviews [27]. Generally, machine
learning is applied in fluid dynamics either to fully re-
place a complex system with a surrogate model or to aug-
ment existing models by addressing unresolved scales or
processes. LES closure falls into the latter category and
has drawn significant interest from researchers. Recent
studies have explored various approaches, including deep
learning [9–12, 28] as well as multi-agent and deep re-
inforcement learning [13, 14]. For a detailed perspective
on data-driven turbulence closure, readers are referred to
the review by Duraisamy [29]. State-of-the-art ML tools
are not yet able to tackle LES models for highly turbu-
lent flows in the regime where the cutoff wavenumber is
high enough to see the strong departure from Gaussian-
ity. This is because of a combination of lack of computa-
tional power and/or accuracy, and lack of training data.
These questions can be addressed in a quantitative way
only in shell models, as of now. One of the first contri-

butions of LES closure in the context of shell models of
turbulence comes from Biferale et al. [30], who developed
a theoretical framework to define an optimal subgrid clo-
sure. This phenomological based closure stands as a good
comparison basis for new approaches. More recently,
there has been a noticeable shift toward data-driven tech-
niques. Ortali et al. [31] made important progress by
using a deep recurrent neural network integrated within
the time integrator scheme to close the system. Their
approach yielded excellent results, especially in captur-
ing both Eulerian and Lagrangian statistics. Another
interesting approach is by Domingues Lemos et al. [32],
who used a probabilistic method, specifically a mixture of
Gaussians, to close the system. This added a new layer
of complexity to LES closure strategies by taking into
account the inherent probabilistic nature of the closure.

Among these approaches, Ortali et al.’s method is par-
ticularly interesting for us because it achieved the best
results and it is the only one based on deep learning.
Since they used an architecture with a memory com-
ponent, they were able to effectively capture the time
history effects in the closure. However, they used an a
priori training approach and, as such, they did not fully
account for the compounding effects of model errors over
time. Addressing this issue would require unrolling the
training process over time.

The concept of unrolling training in time with differ-
entiable solvers was introduced by Um et al. in 2020
[33], under the term solver-in-the-loop, particularly for
correcting errors of numerical solvers. This innovative
approach allows for a NN to interact with a differential
equation solver for many time steps before performing
backpropagation, exposing the NN to (more) correct in-
put distributions, therefore improving the performance
of the model when faced with the common distribu-
tion/data shift seen in the deployment of these kind of
autoregressive models. A key advantage of this method
is its reliance on automatic differentiation (AD) frame-
works when developing the solver, which allow the gradi-
ents to also flow through the solver during backpropaga-
tion, leading to more precise unrolled gradients. Writing
physical solvers using the AD framework is what is now
commonly referred to as differentiable physics. More re-
cently, List et al. [34] studied extensively the benefits
of unrolling in time during training compared to a static
instantaneous approach (a priori training), as well as the
benefits of differentiability in the solver.

Another way to look at the benefits of different train-
ing schemes as well as different architectures is through
the lens of inductive biases. In machine learning ap-
plied to science, models span a spectrum from those that
rely almost entirely on data to those heavily informed by
physical principles. At one end, fully-connected networks
with a non-physics based loss function exemplify purely
data-driven approaches, learning patterns directly from
data without any built-in assumptions about the under-
lying system. Moving along the spectrum, convolutional
networks [35] add some inductive biases, such as the as-

3

sumption of locality and translation invariance, which
are particularly effective in image processing. Further
along, equivariant networks incorporate symmetries spe-
cific to the problem, like rotational symmetry, making
them more specialized and efficient. Neural ordinary dif-
ferential equations push this further by integrating differ-
ential equations into the model, embedding a continuous-
time understanding of dynamics. Finally, at the most in-
ductive end, models based on solver-in-the-loop approach
or physics informed NNs, are tightly constrained by well-
established physical laws. These models not only learn
from data but also ensure that their predictions adhere
to known physical principles, making them particularly
valuable for complex scientific problems where adherence
to physical laws is important. Moreover, they are able to
learn with less data than purely data-driven models and
tend to generalize better.

Other researchers have explored the use of differen-
tiable solvers in combination with DL for LES closure.
Notably, Sirignano et al. [36] applied this approach to
3D Homogeneous Isotropic Turbulence (HIT) (at resolu-
tion 643), while Shankar et al. [37, 38] utilized it for the
Burgers equation (at resolutions 64 − 512) and 2D HIT
(at resolution 642). These efforts do not, alas, extend
to very high Reynolds numbers nor address the intense
and multi-fractal non-Gaussian statistics typical of real
turbulence (2D NSE in the forward enstrophy regime are
even globally smooth). High Reynolds number turbu-
lence presents unique challenges, and it is in this context
that shell models become particularly valuable, offering
a more tractable framework to study this phenomenon.
This is where we believe a research gap exists, and our
work aims to address this gap.

FIG. 1: Energy spectrum showing the large eddy
simulation modeling problem. A cutoff is placed in the
inertial range, in our case Nc = 14. The scales prior to

the cutoff are resolved, whereas the one after are
unresolved. The influence of the unresolved scales on
the resolved ones needs to be modeled. In the case of
the Sabra shell model of turbulence, which only has
nearest and second nearest neighbor interactions, this
means the shells Nc + 1 and Nc + 2 require modeling.

III. SHELL MODELS CLOSURE

Shell models mimic the dynamics of the energy cascade
in three dimensional homogeneous isotropic turbulence
via a system of coupled non-linear complex-valued ODEs
describing the evolution of the velocity field on a set of
wavenuber kn logarithmically equispaced. In this work,
we consider the Sabra model [16], for which the governing
equations are:

dun

dt
= i

(
akn+1un+2u

∗
n+1 + bknun+1u

∗
n−1

− ckn−1un−1un−2

)
− νk2nun + fn , (1)

where n = 0, . . . , N , kn = 2n, and un ∈ C. Looking
at the right-hand side we can see that, similarly to the
NSE in Fourier space, we have a non-linear convective
term (which similarly to NSE defines the coupling among
wavenumbers; in the shell models only two-away neigh-
bouring interactions are considered) which is the trigger
of the energy cascade mechanism, a quadratic dissipative
term that dissipates energy at small scales and a forcing
term which injects energy at the larger scales.

In a fully resolved system, the number of shells N is
determined by the physics of the system. For a higher
Reynolds number, the dissipative Kolmogorov length
scale, kη, will be at a large wavenumber and as such we
have to consider enough shell to resolve it, kN > kη, see
Figure 1. The LES formulation in shells models is sim-
ilar to a Galerkin Fourier truncation where we consider
shells only up until the cutoff wavenumber kNc

defined by
the cutoff shell Nc where Nc≪N and it is usually some-
where in the inertial range. In order to close this reduced
model, we need to provide a model for the two shells right
after the cutoff uNc+1 and uNc+2. This is depicted below
and can be visualized in Figure 1. We denote the fully
resolved model as u, while the LES model is represented
by ũ.

Fully
Resolved
Model

{
u−1 = u−2 = 0

uN+1 = uN+2 = 0

Large
Eddy

Simulation


ũ−1 = ũ−2 = 0

ũNc+1 = unknown, requires modeling

ũNc+2 = unknown, requires modeling

Now, we will introduce our LES-NN model as well as
the basis of comparison, the Ground Truth (GT). The
GT is simply the integration of the fully resolved system
to generate training and testing data. This system is inte-
grated over a long period to ensure that sufficient data is
available to accurately compute the high-order moments
of interest. Both the GT and LES-NN are integrated
in time using a fourth-order Runge-Kutta (RK4) scheme
with the viscous term integrated explicitly. However, dif-
ferent time steps are of course used: the GT is integrated

4

with one much smaller than the LES-NN model to ensure
the Kolmogorov scale (Nη) is resolved.
While both systems have the same time integration

method, the shell models are different. The GT re-
solves the {u0, . . . , uN} using the governing equations.
The LES-NN uses the reduced solver that resolved
{ũ0, . . . , ũNc} using the governing equations and then a
neural network at each time step estimates ũNc+1 and
ũNc+2 , therefore closing the system. This is shown in
Figure 2. As input to the neural network, we provide the

three shells preceding the cutoff, which is sufficient to
close the flux locally. Using fewer shells results in signif-
icantly poorer performance, while including more shells
offers no noticeable improvement.
One implementation is purposely agnostic to the time

integrator used: we integrate the missing terms from the
governing equations for ũNc−1 and ũNc−2 explicitly as
shown in Equation 2 and Equation 3. Terms with su-
perscript θ are the outputs of the NN, while grey text
represents an implicit relation with the NN.

dũθ
Nc−1

dt
= i

 akNc ũ
θ
Nc+1ũ

∗
Nc︸ ︷︷ ︸

Integrated explicitly

+ bkNc−1ũNc ũ
∗
Nc−2 − ckNc−2ũNc−2ũNc−3︸ ︷︷ ︸

Integrated with RK4

− νk2Nc−1ũNc−1 (2)

dũθ
Nc

dt
= i

akNc+1ũ
θ
Nc+2ũ

∗,θ
Nc+1 + bkNc ũ

θ
Nc+1ũ

∗
Nc−1︸ ︷︷ ︸

Integrated explicitly

− ckNc−1ũNc−1ũNc−2︸ ︷︷ ︸
Integrated with RK4

− νk2Nc
ũNc (3)

Algorithm 1 shows the training loop function. For ease
of understanding, the shells between the cutoff are shown
as ũ< and the ones after as ũ>. As it can be seen, the
gradients are also being propagated through the solver
operations (RK4, which calls the rest of the solver func-
tions). It is also possible to perform unrolled training in
the case where the solver is not differentiable, but then
one needs to either stop the gradient flow during back-
propagation whenever the solver is called (which in the
end will lead to worse quality gradients) or to provide
by hand the AD primitives. By having a differentiable
solver, we are able to bypass these two disadvantages and
leave all of the hard work to the AD framework — the
obvious downside of this approach is having to (re)write
the solver in an AD framework, which also comes with
a few caveats compared to regular non-AD framework
programming. In one training iteration, we evolve the
system for msteps, which is a hyperparameter. This rep-
resents the time that we evolve the system before back-
propagating the gradients, i.e., before updating the NN
weights.

The architecture used for our neural network is the
Multi-Layer Perceptron (MLP) [39] with REctified Lin-
ear Unit (ReLU) as the activation function. The number
of trainable parameters used in the MLP varied during
our studies between 1 · 105 and 4 · 105, with the latter
used for the results presented here. The loss used is the
Mean Square Error (MSE) between the prediction of the
reduced system LES-NN, ũ, and the ground truth, u, i.e.,

L =
1

NLoss

NLoss∑
n=1

∥u− ũ∥2bs,Tm√
∥u∥2bs,Tm

√
∥ũ∥2bs,Tm

, (4)

Algorithm1 Training Loop Algorithm (a single
training iteration)

1: Initialize Gradient Tape
2: ũ← ũ0 ▷ batch of ICs selected randomly from

dataset
3: for t = 0 to msteps− 1 do

4: ũ>,θ
t ← NNθ(ũ

<
t)

5: ũ<
t+1 ← RK4(ũ<

t)

6: CNc−1 ← ∆t̃i(akNc
ũθ
Nc+1ũ

∗
Nc

)

7: CNc
← ∆t̃i(akNc+1ũ

θ
Nc+2ũ

∗,θ
Nc+1 +

bkNc
ũθ
Nc+1ũ

∗
Nc−1)

8: C ← concatenate(CNc+1, CNc+2)
9: ũ<

t+1 ← ũ<
t+1 + C

10: end for
11: Compute Loss
12: Compute Gradients
13: Apply Gradients

where ∥u∥2bs,Tm
=

∑bs
b=1

∑τb+Tm

t=τb
|un,t,b|2, Tm denotes the

time in the loop, bs the batch size andNloss is the number
of shells considered in the loss function, which in our case
is equal to six and these are the shells before the cutoff.

Table I shows the parameters used in the numerical
experiments shown in the following section. Regarding
the forcing, the first two shells are forced constantly in
time with the magnitudes f0 = ϵ and f1 = 0.7ϵ. This
forcing ensures zero helicity flux [16].

5

FIG. 2: Schematic representation of the LES-NN closure, illustrating how the neural network provides the necessary
shells to close the system. Starting at time t, the NN takes as input the last three shells before the cutoff (this locally

fixes the flux) {ũt,θ
Nc−2, ũ

t,θ
Nc−1, ũ

t,θ
Nc
} and outputs the two shells after {ũt,θ

Nc+1, ũ
t,θ
Nc+2} (θ denotes an implicit relation

with the NN , whereas θ denotes an explicit one) . This is enough to close the governing equations and evolve them
in time to obtain the new state space at time. This process is repeated for a desired time in the loop. The resulting
velocity field will be used to computed the loss (mean squared error between the prediction and the ground truth).

Backpropagation is applied to compute gradients, followed by an optimization step to update the NN.

IV. RESULTS

In the following, we present the results from our model
and how they compare to the ground truth. In some of
the results, we also compare them with state-of-the-art
DL closures as well as phenomenological ones.

TABLE I: Values of the parameters of the numerical
experiments.

Parameter Value Description

ν 1× 10−12 viscosity
Re ≈ 1012 Reynolds number
ϵ 0.5 forcing
N 40 number of shells
Nη 30 Kolmogorov scale
Nc 14 subgrid cutoff scale
τ0 7.553× 10−1 eddy turnover time for the

integral scale
τη 1.8367× 10−6 eddy turnover time for the

dissipative scale
∆t 1× 10−8 timestep of GT
∆t̃ 1× 10−5 timestep of LES-NN

model
Ndata 256 number of initial condi-

tions of dataset
Nbatch 1024 batch size for training
Ttrain 1.65τ0 integration time of train-

ing dataset
Ttest 3.31τ0 integration time of test

dataset

Figure 3 shows the flatness of different orders, from
F (4) and F (10), with respect to the shell index. The
flatness is computed in terms of the Eulerian structure
functions as:

F (p)
n =

S
(p)
n

(S
(2)
n)

p
2

, (5)

where the Eulerian structure functions are expressed:

S(p)
n = ⟨|un|p⟩t , (6)

with ⟨·⟩ representing the averaging operator. The lower-
order flatnesses show a good agreement with the ground
truth. As the order increases, we start to notice some de-
viations, especially near the cutoff. Despite these devia-
tions, the results remain promising, as these higher-order
moments are non-trivial to reproduce correctly, and phe-
nomenological closures fail to capture them accurately.

Figure 4 attempts to determine the optimal time in the

loop. On the left, F
(4)
n is shown for different times in the

loop (the msteps variable used in Algorithm 1) 1∆t, 50∆t
and 1000∆t, where one time step in the loop corresponds
to the a priori training paradigm. We can see that the
best results are obtained with a value of msteps = 50∆t,
while both msteps = 1∆t and msteps = 1000∆t perform
poorly in comparison. In the subfigure on the right, we
show a continuation of this analysis, where we plot the

MSE of F
(4)
n , given by

MSE (F (4)
n) =

∑Nc

n=0 |F
(4)
nGT − F

(4)
nLES |2

Nc
, (7)

6

FIG. 3: Flatness of different orders computed in terms of the Eulerian structure functions by Equation 5: (a)
flatness of order 4 and 6; (b) flatness of order 8 and 10. Error bars computed by dividing the dataset into chunks,
computing the individual chunk’s statistics and from here estimate the standard deviation. The error bars are only

shown until the cutoff scale.

FIG. 4: (a) Fourth order flatness for different time in the loop (msteps) and compared with the ground truth (error
bars represent the standard deviation). (b) Mean square error of the fourth order flatness (Equation 7) for different

time in the loop.

with respect to the time in the loop. This allows us to
better understand the effect of the time in the loop in the
effectiveness of the training procedure and how it impacts
the final performance of the learned closure. There is a
benefit in increasing the time in the loop until around
100∆t in the loop. Keeping on increasing after this
threshold increases the error. The highest MSE occurs
with instantaneous evaluation, i.e., when msteps = 1.

We saw that there is a clear effect from the duration in
the loop during training in the performance of the model.
A priori, we expect that the optimal loop time will be
a fraction of the eddy turnover time of the fastest shell
included in the loss. Since we use a loss function that
measures the difference between velocity fields, exceed-

ing the eddy turnover time of the fastest shell with a high
msteps value causes the signals (GT and our model) to
decorrelate, making the loss less meaningful. Our focus is
on achieving a statistically accurate closure rather than
synchronizing with the GT, which is unrealistic. There-
fore, the ideal loop time is expected to be a fraction of
τNc

. Exceeding this value smooths out the dynamics of
the fastest shells, pushing the model to track the moving
average of the GT rather than its exact behavior.

To better understand this relation between time scales
of the system and msteps, we show the probability den-
sity function (pdf) of the eddy turnover time τn for the

7

shells considered in the loss in Figure 5, computed as

τn =
1

kn
√
⟨|un|2⟩t

, (8)

where the pdf is obtained considering a time signal of un

for various initial conditions.

Looking back at Figure 4, when we examine the MSE

of F
(4)
n , we see that the optimal msteps value corresponds

to a fraction of the eddy turnover time of the cutoff shell,
⟨τNc
⟩ = 244, with the ideal value being around msteps

= 100, or approximately 0.41⟨τNc
⟩. This analysis shows

the benefit of using the solver-in-the-loop approach ver-
sus the conventional static paradigm and helps under-
stand the physicality of the optimal time in the loop.
Throughout the rest of the paper, we will try to keep
making similar analyses as we did here for the flatness,
for other quantities, as to validate our hypothesis.

Figure 6 shows the Eulerian structure functions. The
results from our closure align closely with the GT within
error bars, though more noticeable deviations appear as
the order increases and near the cutoff. The error-bars
are estimated by splitting the datasets in chunks. We
compute individual statistics for each chunk, report the
average as the central point, and use the difference be-
tween the minimum and maximum as the error bar. To
further verify our implementation, we show as an inset
plot the anomalous scaling exponents ξp of the Eulerian
structure functions:

S(p)
n ∝ k−ξp

n . (9)

Also here, we see an agreement with the GT similar to
what we saw with the flatnesses.

Looking deeper into the anomalous scaling exponents,
Figure 7 shows on the left the comparison of this quantity
for different time in the loop and on the right the MSE
computed via Equation 10. On the left, we see similar
results as we saw before, where a value of msteps = 50∆t
performs best.

MSE (ξp) =

∑P=10
p=1 |ξpGT

− ξpLES
|2

P
(10)

The MSE of the anomalous scaling exponents is even
more expressive than the one of the flatness, as it incor-
porates statistical moments from p = 1 to p = 10 (and
since it is not normalised, it gives more weight to higher
order ones). Similar to the flatness case, the ideal loop
time is a fraction of the eddy turnover time of the fastest
shell. Deviating too much from this value, either higher
or lower, results in an increase in MSE.

Shifting the perspective from Eulerian to Lagrangian,
we now examine the Lagrangian structure functions, as-
sessing whether our model accurately reproduces time
correlations across various time lags. This is illustrated
in Figure 8.

The Lagrangian structure functions are computed as

L(p)
τ = ⟨|u(t+ τ)− u(t)|p⟩t , (11)

where the Lagrangian signals are obtained by summing
the real parts of all the shells u(t) = ℜ(

∑
n un(y)).

Analysing the results, one can see that the model closely
follows the scaling of the ground truth, even for small
time lags and higher-order moments (within error bars),
which are the most challenging to capture accurately.

In Figure 9, we show another statistical quantity: the
pdf of the real part of the velocity signals for different
shells n = 4, 9, 14 normalized by the standard deviation,
for both the model and the ground truth. We see that our
closure has the correct effect on the resolved scales as we
are able to correctly reproduce the Gaussian statistics of
the large scales and more importantly the non-Gaussian
statistics of the small scales, characterized by intermit-
tency.

We aim also to compare our closure with other state-
of-the-art closures. As such, in Figure 10-(a), we show
the local slopes for the second-order Eulerian structure
function, expressed through

ζ(p)n =
log

[
S
(p)
n+1

]
− log

[
S
(p)
n

]
log[λ]

, (12)

with respect to the shell index, for our model, the GT,
the Long Short-Term Memory (LSTM) [42] approach
from Ortali et al. [31] and a phenomenological closure
from Biferale et al. [30]. The LSTM approach performs
well overall although its accuracy decreases near the cut-
off. Its memory component compensates for the static
training, contributing to its robust performance. The
phenomenological closure, smk, performs adequately in
the mid-range but shows significant degradation near the
boundaries. In contrast, our approach oscillates around
the GT and achieves the best performance of the three
models, particularly near the cutoff — where correctly re-
producing the slopes is most challenging due to the more
pronounced effect of the closure.

Figure 10.b shows the MSE of the local slopes of the
fourth order Eulerian structure function:

MSE (ζ(4)n) =

∑Nc

n=0 |ζ
(4)
nGT − ζ

(4)
nLES |2

Nc − 1
. (13)

The trend is similar to the one seen before, although here
the increase in error with high msteps values is not so se-
vere as before. The way to interpret this trend is that for
high msteps, the slope of Sn

(4) is correct, but the total
energy content is off (see the vertical shift of the struc-
ture functions). The inter-shell relations are preserved,
but the absolute energy is inaccurate. This also explains
why the anomalous scaling exponents showed the most
difference out of the three MSE errors for high msteps:
it considers very high order moments and gives them a
considerable weight.

8

FIG. 5: pdf of the eddy turnover time of the shells used in the loss function.

FIG. 6: Eulerian structure functions S
(p)
n = ⟨|un|p⟩t vs.

shell index n, in lin-log scale, for orders p from 1 to 10
and with Nc = 14, comparison between ground truth
(GT) and prediction (Pred). Inset plot: Anomalous

scaling exponents ξp of the Eulerian structure functions

S
(p)
n ∝ k

−ξp
n for the fully resolved model (GT), our

model (LES-NN), the prediction from K41 theory [40]
and the prediction from She-Leveque model [41].

Lastly, in Figure 10-(c), we show the normalised lo-
cal slopes of the Eulerian structure functions computed
with respect to the triads. These structure functions are
computed from Equation 14. Unlike the ones from Equa-
tion 6, these are not prone to period-3 oscillations. The
slopes are computed using the same expression as before,
Equation 12. As expected, performance degrades as the
cut-off is approached. Despite this, for such a sensitive

quantity as the local slopes of structure functions, our
model remains relatively close to the ground truth, with
errors of less than 5%.

Ŝ(p)
n = ⟨|u∗

n−2u
∗
n−1un|

p
3 ⟩t (14)

As demonstrated in previous figures, our model ex-
hibits some error relative to the ground truth. It is im-
portant to determine whether this error arises solely from
the model’s inherent limitations or if a significant statis-
tical error is also present, potentially due to computing
a given statistical observable from a limited sample size.
Figure 11 explores this issue by showing how the local
slope of the third-order Eulerian structure function com-
puted using the triads (Equation 14) evolves over increas-
ing deployment time, for shells n = 4, 5, 6, and 7. The
figure presents results for both our model (LES-NN) and
the ground truth.

We observe that only a few eddy turnover times are
needed to approach the asymptotic value, both for the
ground truth and our model. This suggests that the er-
rors highlighted throughout the paper are primarily due
to intrinsic model limitations rather than statistical fluc-
tuations (with the obvious caveat that error bars, when
shown, refer to statistical errors). The vertical bar in the
figure represents the amount of data used to train our
model. Notably, the model remains stable even when de-
ployed far beyond the time frame it was trained on. This
stability naturally arises from our training methodology,
where we explicitly constrain the time evolution based
on the actual governing equations.

The GT is shown for less deployment time than the
LES-NN model because it takes much longer to run. We
benchmarked the time it takes to run them both on an
NVIDIA A100 GPU, averaging over many realizations

9

FIG. 7: (a) Anomalous scaling exponents ξp for different time in the loop (msteps) and compared with the ground
truth. (b) MSE of ξp (Equation 10) for different time in the loop.

FIG. 8: Lagrangian structure functions or orders
p = 1, . . . , 5 in log-log scale with the time lag, τ , on the

x-axis.

to ensure the validity of our results. We started with an
ensemble of initial conditions and evolved them for one
eddy turnover time of the slowest shell, τ0. On average,
the GT took about 81 minutes, whereas the LES-NN only
took 6 minutes.

This difference can be attributed to the higher time
step used in the LES. Although the presence of the
neural network introduces some computational overhead,
our fully differentiable framework allows us to accelerate
computations by utilizing graph mode and XLA (Accel-
erated Linear Algebra) compilation [43]. Graph mode en-
ables numerous optimizations at the compiler level, such
as statically determining the values of tensors by com-
bining constant nodes in the computation, commonly re-
ferred to as “constant folding.” XLA allows for the opti-
mization of the computational graph. One such optimiza-

tion is for example the separation of independent parts
of a computation, enabling them to be processed across
multiple threads or devices. This parallelism enhances
performance significantly. Furthermore, XLA simplifies
arithmetic operations by eliminating common subexpres-
sions, leading to a more efficient execution of the model.
To evaluate the correct reproduction of the energy

fluxes given our closure, we show the pdf of the convec-
tive fluxes at the cutoff shell, ΠNc

in Figure 12. Where
Πn is given by:

Πn = ℑ[akn+1un+2u
∗
n+1u

∗
n + (b+ a)knun+1u

∗
nu

∗
n−1].

(15)
The results show a strong agreement with the fully re-
solved model. A positive value of this flux indicates
a forward energy cascade at the cutoff shell, transfer-
ring energy to smaller scales. Conversely, a negative
value is called backscatter, meaning energy flows from
smaller scales to larger ones. This phenomenon is par-
ticularly challenging to model in subgrid-scale models,
as improper handling of negative energy flux can lead
to numerical instabilities. This is why phenomenological
closures often avoid addressing backscatter. Similarly,
some deep learning-based closures sidestep this issue to
simplify training and ensure model stability.
Figure 13 shows a comparison of simulation results over

a selected time interval. The top row depicts the large
scales, where the dynamics between the ground truth and
our model remain qualitatively similar until about t =
0.5τ0. After this point, the phases begin to decorrelate,
especially for the smallest large-scale components (shown
in darker colors). The small scales (bottom row) become
fully decorrelated at around the same time, but it occurs
more rapidly due to their shorter eddy turnover times.
It is unreasonable to expect a subgrid-scale model to

maintain synchronization between the LES model and
the GT for extended periods. The goal is simply to re-
cover the statistical moments of the GT rather than pre-

10

FIG. 9: pdf of the real part of the shells 4, 9 and 14 (cutoff shell), in log scale, normalized with the standard
deviation ℜ(un)/σ(ℜ(un)) for the GT and prediction.

cisely replicate its dynamic evolution.
The time step used for the LES, ∆t̃ = 10−5, was chosen

simply because it was the one used by Ortali et al [31].
Given that our model performs best when trained for
an unrolled time of approximately 250 LES time steps
(≈ ⟨τNc⟩) or fewer, we were curious to see how the model
would behave if we increased the time step up to the limit
where only two steps are performed in the loop (msteps=
2∆t̃), with a time step of 10−3. This analysis is presented
in Figure 14, where we plot the MSE of the flatness for
various orders, ranging from 4 to 10, as a function of the
LES time step.

Surprisingly, we observe that the model maintains very
good performance even with a time step 10 times larger
than what was used throughout the paper. It is impor-
tant to note that a time step of ∆t̃ = 10−4 is 10,000 times
larger than the ground truth evolution’s time step. This
indicates that the neural network is not only learning
the physical closure but also some numerical error asso-
ciated with such coarse temporal dynamics. However,
when the time step is further increased to ∆t = 5× 10−4

or ∆t = 10−3, the errors grow significantly, and a notice-
able drop in performance occurs. This is due to two fac-
tors: the increasing influence of numerical errors, which
makes the task more challenging for the neural network,
and the reduced number of unrolled steps during training,
as larger time steps reach the limit of τNc more quickly.

V. CONCLUSIONS

In this work, we have proposed a solver-in-the-loop ap-
proach to learning subgrid-scale closures in a shell model
of turbulence. This methodology leverages the differ-
entiable physics paradigm, allowing the neural network
to interact with the solver during training and optimize
the closure terms a posteriori. By incorporating unrolled
solver interactions, we have demonstrated that our model
outperforms traditional a-priori trained models in terms

of stability and accuracy. Moreover, we show that our
model is able to perform similarly or even outperform
state-of-the-art deep learning approaches with complex
architectures, despite relying on a simpler architecture.
Our results on shell models suggest that the optimal

time-in-the-loop is closely tied to the eddy turnover time
of the fastest shells included in the loss function. This
time scale serves as an approximation of the Lyapunov
time of the LES system. When using a loss function
based on the difference between velocities, setting the
time-in-the-loop beyond the Lyapunov time effectively
attempts to synchronize two systems beyond their syn-
chronization time. Moreover, as the time-in-the-loop in-
creases, the gradients during backpropagation become
more likely to either explode or vanish, a phenomenon
related to the Lyapunov time, making gradient-based op-
timization increasingly unstable. We speculate that even
if a different loss function was used, e.g. one based on
difference in energy flux between the ground truth and
the model, instead of difference in velocities, the optimal
time-in-the-loop would not differ significantly from the
one identified in our study. While such a loss function
does not explicitly enforce trajectory synchronization and
is therefore not directly constrained by the Lyapunov
time, the gradients’ quality deteriorates as the time-in-
the-loop exceeds the Lyapunov time, which might lead
to divergence in training or “worse” optimizer steps.
Extending these conclusions to the 3D NS introduces

additional challenges, primarily due to the increased
memory requirements. The general principles derived
from our study may still hold, though this remains to
be investigated.
Our study also provides relevant insights for future

work using the solver-in-the-loop approach, particularly
in how to a priori tune this time-in-the-loop hyperpa-
rameter. These insights are grounded in the physics of
the system, allowing for better generalization across dif-
ferent physical models.
Beyond shell models, we believe this approach shows

11

FIG. 10: (a) The local slopes (normalised by the ones of the GT) for the second order Eulerian structure functions
(Equation 12) vs. shell index n. Comparison between ground truth (GT), our model (LES-NN), the state-of-the-art
LSTM approach by Ortali et al. [31] and a non-ML approach of an optimal subgrid closure scheme by Biferale et al.

[30]. (b) MSE of ζ
(4)
p (Equation 13) for different time in the loop. (c) Normalised local slopes of the Eulerian

structure functions computed using the triads (Equation 14) for p = 6 and p = 9. Remark: this expression to
compute the Eulerian structure functions using the triads, unlike ⟨|un|p⟩, is not prone to period-3 oscillations and as
such the local slopes oscillate much less. This is why even for such high-order moments slopes as the ones in (c.1)

and (c.2) the range of values is much closer to the GT than in (a).

great potential for more complex systems, including
Navier-Stokes equations, where unresolved scales play a
much more complex role, making learning closure mod-
els more challenging. As such, future work includes ex-
tending this framework to NSE turbulence. A potential
candidate is natural convection in 2D, where the pres-
ence of non-trivial multifractal scaling properties for tem-
perature and Bolgiano scaling for velocity make the clo-
sure problem potentailly as challenging as in 3D turbu-
lence, still retaining a smaller degree of complexity. Ad-
ditionally, the use of differentiable solvers opens up new
possibilities for integrating physical priors more deeply
into machine learning frameworks, potentially further im-
proving generalization and data efficiency. This insight
is not limited to subgrid-scale closure in the context of
LES but can also benefit other problems in fluid dynam-
ics and more generally in science where machine learning
can provide solutions.

The solver-in-the-loop methodology can also be com-

pared to reinforcement learning (RL) approaches, which
similarly aim to optimize decision making through iter-
ative feedback. While model-free RL typically involves
exploring a vast action space and learning from trial
and error, our approach directly integrates the physics
of the problem, leveraging the differentiable nature of
the solver to guide the neural network training. How-
ever, when considering model-based RL, the distinctions
between our solver-in-the-loop approach and RL become
less clear. Model-based RL uses an explicit model of
the environment to predict future states and optimize
actions, similar to how our methodology utilizes a dif-
ferentiable physics model during training. The solver
in the loop approach is conceptually similar to model-
based deep RL, i.e. when the policy is parameterized
by a (deep) neural network. This overlap raises interest-
ing questions about the advantages and disadvantages of
each approach.

In conclusion, the solver-in-the-loop approach presents

12

FIG. 11: Local slopes of the sixth order Eulerian
structure function computed as a function of the triads

(Equation 14), ζ̂
(6)
n , with respect to the

inference/deployment time (expressed in terms of τ0). It
is shown for n = 4, 5, 6, 7. Compared with the GT

reference data. The vertical bar denotes the amount of
data used for training data.

FIG. 12: pdf of the flux at shell Nc (Equation 15).

a robust and flexible method for addressing subgrid-scale
modeling challenges in turbulence using deep learning.
We believe it provides a valuable perspective for combin-
ing machine learning with differentiable physics to tackle
complex, multiscale systems.

ACKNOWLEDGEMENTS

The authors benefited from discussions with M. Sbra-
gaglia. This research was supported by European Union’s

FIG. 13: Qualitative comparison between the GT and
Prediction in terms of the dynamics of the absolute
value of the large scales, |u0|, . . . , |u9| and the small

scales, |u10|, . . . , |u14|.

FIG. 14: Mean square error for the flatness of different

orders, F
(4)
n , . . . , F

(10)
n , for LES-NN models trained

with different time steps, ∆t̃. The error is computed
with respect to the ground truth. The time step is
normalised by the time scale of the cutoff shell.

HORIZON MSCA Doctoral Networks programme under
Grant Agreement No. 101072344, project AQTIVATE
(Advanced computing, QuanTum algorIthms and data-
driVen Approaches for science, Technology and Engi-
neering), the European Research Council (ERC) under
the European Union’s Horizon 2020 research and inno-
vation programme Smart-TURB (Grant Agreement No.
882340), and through an Inria Chair.

13

[1] U. Frisch, Turbulence: The legacy of A. N. Kolmogorov,
Cambride University press 10.1017/CBO9781139170666
(1995).

[2] A. Alexakis and L. Biferale, Cascades and
transitions in turbulent flows, Physics Reports
10.1016/j.physrep.2018.08.001 (2018).

[3] C. Meneveau and J. Katz, Scale-invariance and turbu-
lence models for large-eddy simulation, Annual Review
Fluid Mechanics 10.1146/annurev.fluid.32.1.1 (2000).

[4] P. C. M. Lesieur, O. Metáis, Large-Eddy Simulations of
Turbulence (Cambridge Unversity Press, 2005).

[5] S. B. Pope, Turbulent Flows (IOP Publishing, 2001).
[6] P. Sagaut, Large Eddy Simulation for Incompressible

Flows: An Introduction (Springer, 2006).
[7] A. A. Mailybaev, Hidden scale invariance of intermittent

turbulence in a shell model, Phys. Rev. Fluids 6, L012601
(2021).

[8] A. A. Mailybaev and S. Thalabard, Hidden scale invari-
ance in navier–stokes intermittency, Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 380, 20210098 (2022).

[9] R. Maulik, O. San, A. Rasheed, and P. Vedula,
Sub-grid modelling for two-dimensional turbulence us-
ing neural networks, Journal of Fluid Mechanics
10.1017/jfm.2018.770 (2019).

[10] R. Maulik, O. San, J. D. Jacob, and C. Crick,
Sub-grid scale model classification and blending
through deep learning, Journal of fluid mechanics
https://doi.org/10.1017/jfm.2019.254 (2019).

[11] A. Beck, D. Flad, and C.-D. Munz, Deep neural networks
for data-driven LES closure models, Journal of Computa-
tional Physics https://doi.org/10.1016/j.jcp.2019.108910
(2019).

[12] H. Frezat, G. Balarac, J. L. Sommer, R. Fablet, and
R. Lguensat, Physical invariance in neural networks
for subgrid-scale scalar flux modeling, Physical Review
Fluids https://doi.org/10.1103/PhysRevFluids.6.024607
(2021).

[13] G. Novati, H. L. de Laroussilhe, and P. Koumout-
sakos, Automating turbulence modelling by multi-agent
reinforcement learning, Nature Machine Intelligence
10.1038/s42256-020-00272-0 (2021).

[14] M. Kurz, P. Offenhauser, and A. Beck, Deep reinforce-
ment learning for turbulence modeling in large eddy sim-
ulations, International Journal of Heat and Fluid Flow
10.1016/j.ijheatfluidflow.2022.109094 (2023).

[15] L. Biferale, Shell models of energy cascade in turbulence,
Annual Review of Fluid Mechanics 35, 441 (2003).

[16] V. S. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia, and
D. Vandembroucq, Improved shell model of turbulence,
Physical Review E 58, 1811 (1998).

[17] Y. Hattori, R. Rubinstein, and A. Ishizawa, Shell model
for rotating turbulence, Phys. Rev. E 70, 046311 (2004).

[18] J. Mingshun and L. Shida, Scaling behavior of velocity
and temperature in a shell model for thermal convective
turbulence, Phys. Rev. E 56, 441 (1997).

[19] D. H. Wacks and C. F. Barenghi, Shell model of super-
fluid turbulence, Phys. Rev. B 84, 184505 (2011).

[20] F. Plunian, R. Stepanov, and P. Frick, Shell models of
magnetohydrodynamic turbulence, Physics Reports 523,
1 (2013), shell Models of Magnetohydrodynamic Turbu-

lence.
[21] R. Benzi, L. Biferale, R. M. Kerr, and E. Trovatore, Heli-

cal shell models for three-dimensional turbulence, Phys.
Rev. E 53, 3541 (1996).

[22] M. H. Jensen, G. Paladin, and A. Vulpiani, Shell model
for turbulent advection of passive-scalar fields, Phys.
Rev. A 45, 7214 (1992).

[23] A. A. Mailybaev, Spontaneously stochastic solutions in
one-dimensional inviscid systems, Nonlinearity 29, 2238
(2016).

[24] D. Bandak, A. A. Mailybaev, G. L. Eyink, and N. Gold-
enfeld, Spontaneous stochasticity amplifies even thermal
noise to the largest scales of turbulence in a few eddy
turnover times, Phys. Rev. Lett. 132, 104002 (2024).

[25] P. Constantin, B. Levant, and E. S. Titi, Regularity of
inviscid shell models of turbulence, Phys. Rev. E 75,
016304 (2007).

[26] I. Daumont, T. Dombre, and J.-L. Gilson, Instanton cal-
culus in shell models of turbulence, Phys. Rev. E 62, 3592
(2000).

[27] R. Vinuesa and S. L. Brunton, Enhancing computational
fluid dynamics with machine learning, Nature Computa-
tional Science 2, 358 (2022).

[28] C. Cho, J. Park, and H. Choi, A recursive neural-
network-based subgrid-scale model for large eddy simu-
lation: application to homogeneous isotropic turbulence,
Journal of Fluid Mechanics 1000, A76 (2024).

[29] K. Duraisamy, Perspectives on machine learning-
augmented Reynolds-averaged and large eddy simu-
lation models of turbulence, Physical Review Flu-
ids 6, https://doi.org/10.1103/PhysRevFluids.6.050504
(2019).

[30] L. Biferale, A. A. Mailybaev, and G. Parisi, Optimal sub-
grid scheme for shell models of turbulence, Physical Re-
view E 95, 10.1103/physreve.95.043108 (2017).

[31] G. Ortali, A. Corbetta, G. Rozza, and F. Toschi, Nu-
merical proof of shell model turbulence closure, Physical
Review Fluids 7, 10.1103/physrevfluids.7.l082401 (2022).

[32] J. D. Lemos and A. A. Mailybaev, Data-based approach
for time-correlated closures of turbulence models, Physi-
cal Review E 109, 10.1103/physreve.109.025101 (2024).

[33] K. Um, R. Brand, Y. Fei, P. Holl, and N. Thuerey, Solver-
in-the-loop: Learning from differentiable physics to inter-
act with iterative pde-solvers, Advances in Neural Infor-
mation Processing Systems (2020).

[34] B. List, L.-W. Chen, K. Bali, and N. Thuerey, How
temporal unrolling supports neural physics simulators
(2024), arXiv:2402.12971 [cs.LG].

[35] K. Fukushima, Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition
unaffected by shift in position, Biological Cybernetics 36,
193–202 (1980).

[36] J. Sirignano, J. F. MacArt, and J. B. Freund, DPM: A
deep learning PDE augmentation method with applica-
tion to large-eddy simulation, Journal of Computational
Physics 423, 109811 (2020).

[37] V. Shankar, V. Puri, R. Balakrishnan, R. Maulik, and
V. Viswanathan, Differentiable physics-enabled closure
modeling for Burgers’ turbulence, Machine Learning:
Science and Technology 4, 015017 (2023).

https://doi.org/10.1017/CBO9781139170666
https://doi.org/10.1016/j.physrep.2018.08.001
https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/https://doi.org/10.1017/CBO9780511755507
https://doi.org/https://doi.org/10.1017/CBO9780511755507
https://doi.org/https://doi.org/10.1017/CBO9780511840531
https://doi.org/https://doi.org/10.1007/b137536
https://doi.org/https://doi.org/10.1007/b137536
https://doi.org/10.1103/PhysRevFluids.6.L012601
https://doi.org/10.1103/PhysRevFluids.6.L012601
https://doi.org/10.1098/rsta.2021.0098
https://doi.org/10.1098/rsta.2021.0098
https://doi.org/10.1098/rsta.2021.0098
https://doi.org/10.1017/jfm.2018.770
https://doi.org/https://doi.org/10.1017/jfm.2019.254
https://doi.org/https://doi.org/10.1016/j.jcp.2019.108910
https://doi.org/https://doi.org/10.1103/PhysRevFluids.6.024607
https://doi.org/10.1038/s42256-020-00272-0
https://doi.org/10.1016/j.ijheatfluidflow.2022.109094
https://doi.org/10.1146/annurev.fluid.35.101101.161122
https://doi.org/10.1103/physreve.58.1811
https://doi.org/10.1103/PhysRevE.70.046311
https://doi.org/10.1103/PhysRevE.56.441
https://doi.org/10.1103/PhysRevB.84.184505
https://doi.org/https://doi.org/10.1016/j.physrep.2012.09.001
https://doi.org/https://doi.org/10.1016/j.physrep.2012.09.001
https://doi.org/10.1103/PhysRevE.53.3541
https://doi.org/10.1103/PhysRevE.53.3541
https://doi.org/10.1103/PhysRevA.45.7214
https://doi.org/10.1103/PhysRevA.45.7214
https://doi.org/10.1088/0951-7715/29/8/2238
https://doi.org/10.1088/0951-7715/29/8/2238
https://doi.org/10.1103/PhysRevLett.132.104002
https://doi.org/10.1103/PhysRevE.75.016304
https://doi.org/10.1103/PhysRevE.75.016304
https://doi.org/10.1103/PhysRevE.62.3592
https://doi.org/10.1103/PhysRevE.62.3592
https://doi.org/10.1038/s43588-022-00264-7
https://doi.org/10.1038/s43588-022-00264-7
https://doi.org/10.1017/jfm.2024.992
https://doi.org/https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1103/physreve.95.043108
https://doi.org/10.1103/physrevfluids.7.l082401
https://doi.org/10.1103/physreve.109.025101
http://arxiv.org/abs/2402.12971
http://arxiv.org/abs/2402.12971
https://arxiv.org/abs/2402.12971
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251
https://doi.org/10.1016/j.jcp.2020.109811
https://doi.org/10.1016/j.jcp.2020.109811
https://doi.org/10.1088/2632-2153/acb19c
https://doi.org/10.1088/2632-2153/acb19c

14

[38] V. Shankara, D. Chakrabortya, V. Viswanathana,
and R. Maulik, Differentiable Turbulence: Clo-
sure as a PDE-constrained optimization, arXiv
10.48550/arXiv.2307.03683 (2024).

[39] B. Cheng and D. M. Titterington, Neural networks: A
review from a statistical perspective, Statistical Science
10.1214/ss/1177010638 (1994).

[40] A. N. Kolmogorov, The local structure of turbulence in
incompressible viscous fluid for very large Reynolds num-
bers, Proc. Math. Phys. Eng. Sci 434, 9 (1991).

[41] Z.-S. She and E. Leveque, Universal scaling laws in fully
developed turbulence, Physical Review Letters 72, 336
(1994).

[42] S. Hochreiter and J. Schmidhuber, Long short-term mem-
ory, Neural Computation 9, 1735 (1997).

[43] R. M. Larsen and T. Shpeisman, Tensorflow graph opti-
mizations (2019).

https://doi.org/10.48550/arXiv.2307.03683
https://doi.org/10.1214/ss/1177010638
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1103/physrevlett.72.336
https://doi.org/10.1103/physrevlett.72.336
https://doi.org/https://doi.org/10.1162/neco.1997.9.8.173
https://research.google/pubs/tensorflow-graph-optimizations/
https://research.google/pubs/tensorflow-graph-optimizations/

	Solver-in-the-loop approach to closure of shell models of turbulence
	Abstract
	Introduction
	Related Work
	Shell Models closure
	Results
	Conclusions
	Acknowledgements
	References

