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Fig. 1. Di�usion contours. From 6.6M salient line segments extracted from van Gogh’s “Irises” (Ge�y Museum) acting as Dirichlet boundary conditions, we

solve a boundary integral equation to di�use these boundary colors through Laplace’s equation, generating a 9600×7413 image (right) corresponding to 64M

extrapolated pixels. With our lightning-fast inverse-LU preconditioner, a GMRES solver reaches a relative error below 0.001 in just 20 iterations, compared to

4200 iterations with regular Jacobi preconditioning. This corresponds to a wall-clock time speedup factor of over 200 (15 minutes vs. 2.1 days per color channel).

Boundary element methods (BEM) for solving linear elliptic partial di�eren-

tial equations have gained traction in a wide range of graphics applications:

they eliminate the need for volumetric meshing by solving for variables

exclusively on the domain boundary through a linear boundary integral

equation (BIE). However, BEM often generate dense and ill-conditioned

linear systems that lead to poor computational scalability and substantial

memory demands for large-scale problems, limiting their applicability and

e�ciency in practice. In this paper, we address these limitations by gen-

eralizing the Kaporin-based approach to asymmetric preconditioning: we

construct a sparse approximation of the inverse-LU factorization of arbitrary

BIE matrices in a massively parallel manner. Our sparse inverse-LU factor-

ization, when employed as a preconditioner for the generalized minimal

residual (GMRES) method, signi�cantly enhances the e�ciency of BIE solves,

often yielding orders-of-magnitude speedups in solving times.
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1 Introduction

The Boundary Element Method (BEM) o�ers compelling advantages

for solving linear partial di�erential equations. Its key bene�ts in-

clude requiring only a discretization of the boundaries (removing

the heavy burden of constructing conforming volumetric meshes

in 3D and dramatically reducing the number of unknowns to solve

for), handling both interior and exterior problems with equal ef-

fectiveness (even for in�nite domains with bounded boundaries),

and achieving high convergence rates for both the solution and its

derivatives throughout the domain. In practice, however, BEM faces

signi�cant scalability challenges in both memory and computational

cost: the resulting boundary integral equations (BIE) lead to dense

and often ill-conditioned linear systems [Yuan and Zhang 2019].

A recent collection of works promotes stochastic methods to cir-

cumvent some of these issues [Sawhney and Crane 2020; Sawhney

et al. 2023; Miller et al. 2024; Sugimoto et al. 2023] by completely

bypassing the need for linear solves. These methods leverage a

stochastic interpretation of PDEs, computing their solution as the

expectation of a large number of random walks. While allowing

for rapid and localized previews of solutions and �exible handling

of diverse boundary representations, their inherent noise and slow

convergence rate often reinforce that traditional deterministic ap-

proaches remain essential for applications requiring controllable

accuracy at reasonable computational costs.
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[D (x)]Γ = 0 [D (x)]Γ = f (x) D (x) |
x∈R3 \Ω = 0

Fig. 2. Variants of BIE. A Dirichlet problem for Laplace’s equation has a

unique solution inside a ki�en-shaped domain, but can di�er outside based

on whether one uses an indirect version with single-layer potential (le�) or

double-layer potential (middle), or the direct approach (right).

Recent work by Chen et al. [2024] made signi�cant progress

towards a fast deterministic approach by introducing an inverse

Cholesky preconditioner that substantially speedups the Method

of Fundamental Solutions (MFS) [Fairweather and Karageorghis

1998], achieving computational gains of several orders of magnitude

compared to existing direct and iterative solvers. However, their

approach only applies to symmetric systems and, thus, primarily

addresses meshless discretization of BIE — while the majority of

applications using BEM involves asymmetric systems.

Overview. The core focus of this work is therefore to extend the

bene�ts of inverse preconditioning to general asymmetric linear

systems arising from BEM for solving elliptic PDEs. In a nutshell,

we present a method for constructing, in a massively parallel man-

ner, an inverse LU preconditioner to any (symmetric or asymmetric)

BIE matrix. When used to precondition an FMM-accelerated gen-

eralized minimal residual (GMRES) iterative method, our resulting

preconditioner enables one to solve large-scale BEM problems with low

memory usage as neither the construction nor the GMRES iterations

ever require storing the full dense BIE matrix. Perhaps even more

importantly, the e�ciency of our preconditioning and its minimal

computational overhead at runtime accelerates the GMRES iterative

solve of the BIE in all the large-scale experiments we conducted,

resulting at times in orders-of-magnitude speedups compared to exist-

ing solvers. We validate the scalability and e�ciency of our method

by demonstrating its use in a few BEM-based graphics applications.

2 Boundary element method in graphics: a review

We begin with a review of the boundary element method in order to

provide context to our contributions and introduce our notations.

2.1 Boundary integral equation

For the following discussion, Laplace’s equation will be used as

an illustration — but any other linear operator for which we have

explicit knowledge of a fundamental solution of the di�erential

equation can be used. Given a domain Ω⊂R
3 with boundary Γ :=mΩ,

a solution to the Laplace equation △D (x) = 0 can be expressed

through the sum of two boundary potentials, in an expression valid

away from Γ called the representation formula [Sauter et al. 2011]:

∀x ∈ R
3\Γ, D (x)=

∫

Γ

m� (x, y)
mny

f (y) d�y −
∫

Γ

� (x, y)g (y) d�y, (1)

where � (x, y) is the Green’s function (the fundamental solution of

the partial di�erential equation for a Dirac impulse at boundary

point y), and m� (x, y)/mny is its normal derivative as ny is the out-

ward normal of the domain at y. In this representation of a solution

D, the second integral is often referred to as the single-layer potential,

while the �rst integral is the double-layer (or dipole) potential. This

general expression involves two unknown densities f (y) and g (y)
that need to be solved for. If we denote [.]Γ the jump of a �eld across

the boundary Γ, the densities are respectively encoding the di�er-

ence of values of the solution D and its normal derivative on both

sides of the boundary Γ, i.e., f (y) := [D (y)]Γ and g (y) := [mnyD (y)]Γ .
These two densities are found by solving what is referred to as

the Boundary Integral Equation (BIE), which consists in ensuring

that the representation formula leads to a solution D satisfying the

desired boundary conditions on Γ — with either Dirichlet condi-

tions enforcing particular values (and/or jump values) of D on Γ,

or Neumann conditions enforcing the values of the normal deriv-

ative of D (and/or its jumps) across Γ, or a mix thereof [Sugimoto

et al. 2023, Table 1]. The resulting boundary integral equation can

be a Fredholm integral equation of the �rst kind involving only

the Green’s function as its kernel, or of the second kind with the

normal derivative of the Green’s function as its kernel, or even a

combination of both if mixed boundary conditions are prescribed.

This general form of the representation formula allows us to deal

with a variety of cases such as direct and indirect versions [Costabel

1987]. For instance, for prescribed Dirichlet boundary values on Γ,

we can �nd solutions with no jumps across the boundary ([D (x)]Γ =
0), no jumps in the normal derivatives ([mnD (x)]Γ =0 and [D (x)]Γ =
f (x)), or vanishing outside the domain Ω (D (x)=0 ∀x∈R3\Ω), as
illustrated in Fig. 2. We will elaborate on the exact forms of the BIE

for speci�c applications in Sec. 4.

2.2 Discretization

In order to discretize Eq. (1) and the BIE, basis functions are in-

troduced to parameterize the solution D and the unknown density

functions. In all the examples presented in this paper, we discretize

the boundary through simplicial elements (line segments in 2D, tri-

angles in 3D) and use piecewise-constant basis functions for the sake

of simplicity of exposition and to simplify the evaluation of kernels

in a matrix-free manner. The boundary condition, be it Dirichlet

or Neumann, is enforced at the centroid of each boundary element

by substituting the solution with the representation formula, re-

sulting in a linear system Gs=b where the variable s contains the

density values on boundary elements since the integrals in the orig-

inal equation turn into a sum of local integrals over each elements.

The resulting BIE matrix G is dense due to the global nature of the

Green’s function and its derivative. Note that while the Green’s

function is singular at its associated boundary sample point y8 , it is

only weakly singular in the sense that the integral of � (x, y: ) over
an element ): is �nite; similarly, the normal derivative is strongly

singular at a boundary sample point, but its integral over an element

exists in the sense of the Cauchy principle value.

2.3 Existing numerical solvers

In Computer Graphics applications, solving the BIE is often achieved

via direct solvers based on Singular Value Decomposition [Schreck

et al. 2019] or LU decomposition [James and Pai 1999; De Goes and

James 2017; Xia et al. 2020], and sometimes via Conjugate Gradient
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Fig. 3. Di�usion curves. Starting with the colored curves (top row) as

input, we generate images at a minimum resolution of 4K in approximately

30 seconds to a few minutes (see Table 1), outperforming the Jacobi precon-

ditioner by orders of magnitude (see Fig. 7).

(CG) or Generalized Minimal Residual method (GMRES) for which

a Fast Multipole Method (FMM) based dense-matrix-vector multipli-

cation can be employed to drastically improve e�cacy [Zhong et al.

2019; Bang et al. 2023]. While direct solvers have a prohibitive cubic

complexity, the iteration count of iterative solvers scales poorly in

the number of boundary elements in many single-layer BEM con-

texts, limiting the sizes of problems one can solve e�ciently; in fact,

most numerical examples in BEM applications were not exceeding

20K degrees of freedom in practice to keep memory footprint and

computational costs acceptable.

E�orts to construct fast preconditioners for BIE matrices to ac-

celerate the convergence of FMM-optimized iterative solvers have

also been limited. While early works only leveraged basis trans-

formation [Steinbach and Wendland 1998] and ad-hoc multigrid

preconditioning [Schippers 1985], more recent improvements in-

volvedH -matrices allowing for fast LU factorizations [Kriemann

2013], or nested GMRES-based constructions [Amlani et al. 2019],

with reported performance improvements around a factor two.

Closely related to our method, the use of (factorized) sparse approx-

imate inverse preconditioners (also known as FSAI) was pursued by

[Kolotilina 1988; Vavasis 1992; Carpentieri et al. 2005; Kolotilina and

Yeremin 1993]. However, Carpentieri et al. [2004] found that “clas-

sical factorized approximate inverses [...] show poor convergence

behavior”. We show in this paper that approximate inverse pre-

conditioning can actually be tremendously helpful — not for sparse

matrices as more commonly considered, but for dense BEMmatrices

— provided that appropriate ordering and sparsity are employed.

In the speci�c case of a symmetric and positive-de�nite BIE ma-

trix, Chen et al. [2024] recently pioneered a much faster, yet accurate

alternative: they leveraged Kaporin’s variational de�nition of the

inverse-Cholesky factor [Kaporin 1994] and its connection to the

statistical screening e�ect [Stein 2002] observed by Schäfer et al.

[2021a]. Although Kaporin’s preconditioning was originally for-

mulated for sparse matrices, it was proposed as a Kullback-Leibler

optimal direct solver for dense matrices based on Gaussian process

regression in [Schäfer et al. 2021a] and coincides with the popular

Vecchia approximation [Vecchia 1988; Katzfuss and Guinness 2021]

in spatial statistics. Chen et al. [2024] turned it into a massively-

parallelizable MFS preconditioner, improving existing solvers by sev-

eral orders of magnitude. While this contribution now renders MFS

methods and the symmetric Galerkin formulation of BEM [Bonnet

et al. 1998] able to e�ciently handle very large problems (examples

with up to 1M degrees of freedom were shown), it does not address

the more general formulations of BEM that generate asymmetric BIE

matrices, which are needed for many graphics applications such as

di�usion images.

In addition to all these deterministic approaches, probabilistic

methods have gained popularity recently. These methods compute

solutions as expectation of a random walk simulation, and accom-

modate various types of boundary conditions. They are built on

either the mean value property of harmonic functions (as in the

Walk-on-Sphere method and its variants [Sawhney and Crane 2020;

Sawhney et al. 2023; Miller et al. 2024]) or on stochastic evaluations

of a Neumann series (as in the Walk-on-Boundary method [Sugi-

moto et al. 2023]). While their independent pointwise calculations

enable massive parallelization, the resulting solution often lacks

accuracy, exhibiting “salt-and-pepper” noise as they converge to

the ground truth values at a sublinear rate (in the square root of

the number of samples). Though useful for quick previews, visually-

pleasing results requires boundary caching for path reuse [Miller

et al. 2023] or post-processing through denoising [de Goes and Des-

brun 2024], which undermines their initial appeal of being able to

evaluate solutions in speci�c regions of interest without resorting

to global computations.

2.4 Applications and their current bo�lenecks

The Boundary Element Method has been widely adopted in graphics

due to its ability to considerably reduce a problem’s dimensionality

and to deal with in�nite domains: compared to the �nite-element
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method, only a surface needs to be discretized into a mesh to eval-

uate the solution everywhere in 3D, resulting in a substantial re-

duction in modeling e�ort and in the number of unknowns to solve

for. Three kinds of second-order partial di�erential equations have

been of particular interest: Laplace’s equation, linear elasticity, and

the Helmholtz equation. Among the three, Laplace’s equation is

especially prominent, with applications spanning geometry process-

ing [Solomon et al. 2017], vector graphics [Sun et al. 2012; Bang

et al. 2023], and �uid and ferro�uid �ow simulation [Da et al. 2016;

Huang and Michels 2020; Ni et al. 2024]. The use of BEM for linear

elasticity began with the seminal work of James and Pai [1999] be-

fore being extended to include fracture modeling [Hahn and Wojtan

2015, 2016] and elastodynamics [Sugimoto et al. 2022]. Addition-

ally, the wave nature of the Helmholtz equation lends itself well to

modeling vibrational phenomena in graphics such as sound prop-

agation [James et al. 2006; Umetani et al. 2016] or wave optics for

rendering iridescence e�ects in thin �bers [Xia et al. 2020]. While

all these applications bene�ted from the reduced dimensionality

provided by BEM, only a small to moderate number of boundary

elements or samples were typically employed in practice to allow

for relatively fast dense linear solves using direct or iterative solvers

as discussed in Sec. 2.3. Even if an FMM-accelerated evaluation is

used, the dense BIE solve remains prohibitively expensive for very

large problems, not only in terms of memory requirements, but also

often in terms of computational complexity when ill-conditioned

BIE systems (which often occur for Fredholm integral equations

of the �rst kind [Yuan and Zhang 2019]) need to be solved. Our

work proposes to build a fast BIE solver by quickly and e�ciently

preconditioning the BIE matrix to allow for large-scale applications

of the BEM framework.

3 Constructing an Inverse LU Preconditioner

We now elaborate on our construction of a BIE matrix precondi-

tioner, which will allow us to e�ciently evaluate the unknown

densities s from the non-symmetric linear system Gs = b given

boundary conditions assembled in b. By approximating the inverse

of the boundary integral operator G via LU factorization (LU≈G−1),
a better conditioned system UGLz=Ub can be solved for z instead,

o�ering faster convergence of the GMRES solver with very small

computational overhead as we only need to perform sparse matrix-

vector multiplication. The �nal densities are then trivially obtained

through forward-substitution via s=Lz.

3.1 Inverse LU factorization in closed-form

From inverse Cholesky factorization... Given a symmetric BIE ma-

trixG of size �×�, it may seem improbable to �nd a Cholesky factor-

ization of its inverse without computing the inverse �rst. However,

Kaporin [1994] proposed a simple construction of an incomplete

inverse Cholesky factor, i.e., a sparse approximation of the Cholesky

factor of the inverse matrix. This method provides closed-form ex-

pressions for each column of the inverse factor. Although initially

developed for sparse and symmetric di�erential operators, Kaporin’s

approach has proven most e�ective in other contexts, including in

the approximation of Gaussian process regression [Katzfuss and

Guinness 2021; Schäfer et al. 2021a] and in the massively-parallel

evaluation of preconditioners for the Method of Fundamental So-

lutions and symmetric Galerkin BIE matrices [Chen et al. 2024].

However, many BEM approaches lead to non-symmetric BIE matri-

ces, for which no good preconditioners have been proposed.

... to inverse LU factorization. Since the non-symmetric version

of the Cholesky factorization is known as the LU factorization (fac-

toring a matrix as the product of a lower triangular matrix L and

an upper triangular matrix U), we propose to extend Kaporin’s con-

struction to now express an incomplete inverse LU factorization of

a non-symmetric BIE matrix G — an idea mentioned in [Kolotilina

and Yeremin 1993] and explored by [Yeremin and Nikishin 2004],

albeit for sparse matrices and without speci�c ordering or sparsity

pattern. Given a lower-triangular sparsity pattern S⊆ {(8, 9) | 8≥ 9}
specifying the desired nonzero coe�cients (�ll-ins) of L, we denote

the incomplete LU factors of the inverse of G as LS and UST , where

we assumed the same sparsity pattern (up to transpose) for the upper

triangular factor — note that we will later discuss that establishing

a di�erent sparsity pattern for each factor is possible as well, but

would cost unnecessary memory consumption and computational

overhead for little preconditioning gain. We propose to compute

each column of L and each row of U independently through




LS9 , 9 =
G−1

S9 ,S9
e9

eT9G
−1
S9 ,S9

e9
,

UT

9,S9 = G−T

S9 ,S9 e9 ,

(2a)

(2b)

where we adopted the notation of [Chen et al. 2024], i.e., the spar-

sity pattern of the 9 th column is denoted S9 = {8 | (8, 9) ∈ S}; e9 =
[1, 0, . . . , 0] ∈R|S9 | for 9 =1, ..., �; and GS9 ,S9 denotes the submatrix

indexed by S9 of the matrix G, while G−T

S9 ,S9
denotes the transpose

of its inverse. Our normalization in Eq. (2a) follows the standard

LU decomposition convention of a lower triangular factor with unit

diagonal; and similar to the symmetric case, our factorization turns

out to be the solution of a variational problem as shown in App. B.

From Eq. (2), one can notice that computing LS9 , 9 and UT

S9 , 9
only

requires a small linear system solve involving GS9 ,S9 . As a result,

each row and column of the inverse LU factors can be computed

e�ciently in a massively parallel manner, without ever assembling

the entire BIEmatrix inmemory. To perform local solves, we propose

a local UL factorization of GS9 ,S9 =US9 ,S9LS9 ,S9 which decomposes it

into the product of an upper triangular matrix and a lower triangle

matrix with a unit diagonal, the resulting factors US9 ,S9 and LS9 ,S9
having dimensions |S9 |× |S9 |; we can then evaluate our inverse LU

factors e�ciently since, by substituting this factorization into Eq. (2),

LS9 , 9 =
L
−1
S9 ,S9

e9

eT9L
−1
S9 ,S9

e9
, UT

9,S9 = U
−T

S9 ,S9 e9 , ∀9 = 1, . . . , �. (3)

Our use of a UL (instead of LU) decomposition of GS9 ,S9 improves

computational e�ciency as it allows to reuse local factorizations

for processing multiple rows and columns belonging to the same

supernode as we will discuss in Sec. 3.3. Similar to the Cholesky

case, Eq. (2) implies a unit diagonal, that is,

diag(USTGLS) = 1, (4)
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Fig. 4. Multiscale structure of the sparsity pa�ern. In order to validate the e�icacy of our inverse LU approximation, we first reorder the boundary samples

(centroids of boundary simplices) and compute the exact LU factorization of the inverse single-layer operator — a computationally feasible task for these small

models. We then sparsify the columns of both LU factors individually by thresholding to zero any value smaller than 0.6% of the associated diagonal value to

build a ground-truth sparsity, and we visualize the remaining non-zero connections emerging from points (corresponding to the le�over column values from

these points) across di�erent scales. These two comparisons demonstrate that the inverse factors are localized within each scale, and that our geometric

sparsity construction, derived from the screening e�ect, captures the significant non-zero fill-ins, closely matching the ground-truth pa�erns in both 2D (le�)

and 3D (right). Note that only the coarsest boundary samples are displayed to maintain legibility.

which is easy to verify by directly evaluating a diagonal entry:

∀9,U9,S9GLS9 , 9 = U9,S9GS9 ,S9 LS9 , 9 = eT9G
−1
S9 ,S9GS9 ,S9

G−1
S9 ,S9

e9

eT9G
−1
S9 ,S9

e9
= 1.

3.2 Ordering and sparsity selection

A critical step to the quality of preconditioners based on incom-

plete factorization is the pre-ordering of all degrees of freedom (and

thus, of the rows and columns of the input matrix [Benzi 2002])

as it directly in�uences numerical performance and conditioning

improvement. Similarly, determining which neighbors to consider

to enforce sparsity but limit inaccuracy can be key in precondition-

ing e�cacy, a matter left unaddressed by previous sparse inverse

preconditioners. We discuss our choices next.

Ordering. To precondition a BIE matrix, we employ a reverse

max-min ordering [Guinness 2018; Schäfer et al. 2021b] before com-

puting the two factors de�ned in Eq. (3). Speci�cally, we reorder the

boundary points using a farthest-point sampling strategy: at each

step of a descending order :=�, � − 1, .., 1, the next point is chosen

as the farthest point from the previously-selected ones; that is, the

: th index 8: is de�ned as

8: = argmax
?∈[1,..,� ]\{8:+1,..,8� }

min
@∈{8:+1,..,8� }

dist(y? , y@), (5)

where dist(·, ·) is the Euclidean distance between two boundary

samples. The initial index 8� is generically selected as the index of

the point closest to a corner of the domain’s bounding box. Although

a brute-force approach to compute a farthest-point sampling has

y8�

y8�−2

y8�−1

y8�−3

y8:
;8:

cubic complexity in the number � of bound-

ary samples, an O(� log2 �) algorithm was,

for instance, proposed by [Schäfer et al.

2021b]. During the reordering of the bound-

ary samples, a length scale (see inset) is also

assigned to each boundary point, de�ned as

;8: = min
@∈{8:+1,..,8� }

dist(y8: , y@), (6)

encoding the spatial in�uence of a boundary point that is mono-

tonically increasing in the reverse max-min ordering such that the

coarser scale a point is at, the larger its support radius.

Multiscale sparsity pattern. From the length scales, we de�ne the

lower triangular sparsity pattern as in [Schäfer et al. 2021b; Chen

et al. 2021], that is, we use

(d = {(8, 9) | 8 ≥ 9 and dist(y8 , y9 ) < d min(;8 , ; 9 )}, (7)

meaning that an element (8, 9) in (d will be forced to be zero if

y8 and y9 are not within each other’s support radius scaled by a

parameter d > 0. This adjustable parameter provides a trade-o�

between accuracy and performance of our LU preconditioner: the

smaller d is, the more sparse the approximations of the inverse LU

factors will be — but the less accurate they will be.

Rationale behind ordering and sparsity choices. The non-locality of

Green’s functions for second-order PDEs implies long-range spatial

interactions between boundary elements, hence the density of the

BIE matrix and its ensuing challenges to numerical e�ciency. But

when performing Gaussian elimination, this non-locality allows

the elimination of a degree of freedom to neutralize interactions

Fig. 5. Screening long-range interactions.We visualize a single row of

the discretized single-layer operator corresponding to the central element

(le�) and the same row in the Schur complement matrix a�er eliminating a

number of elements around the center (right). The elimination significantly

weakens interaction strength between the central element and distant ones,

subject to the screening e�ect of Green’s function.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



6 • Chen et al.

0 · 100 5 · 101 1 · 102
10−8

10−4

100

iteration

re
l.
er
ro
r2

� = 560561

Ours (d =6)

Jacobi

0 · 100 1 · 102 2 · 102 3 · 102
10−8

10−4

100

iteration

re
l.
er
ro
r2

� = 592564

Ours (d =6)

Jacobi

0 · 100 1 · 102 2 · 102 3 · 102

10−5

100

iteration

re
l.
er
ro
r2

� = 412498

Ours (d =6)

Jacobi

Fig. 6. 3D di�usion. For a Dirichlet boundary condition based on noise functions, the single-layer BIE for this Laplace’s equation results in a density of

change that is di�used into the ambient space via the representation formula (Eq. (10)) and visualized through a cross section. The intricate geometry of these

boundaries leads to large-scale BIEs with approximately 0.5M unknowns in these three examples. Despite the problem’s size, our method achieves e�icient

GMRES convergence within 10 to 20 iterations, while a simple Jacobi preconditioner o�en fails to even converge in practice.

in the remaining matrix, see Fig. 5. In probabilistic terms, depen-

dencies between degrees of freedom increase the complexity of

the joint distribution, but the resulting redundancy decreases the

complexity of its conditional distributions, which are essentially

encoded by the inverse-Cholesky factors. This is the key idea be-

hind the screening e�ect by which conditioning a smooth stochastic

process on values near a target point weakens the target’s corre-

lation with more distant points. Intuitively, this happens because

the information provided by the nearby points renders that of the

distant points redundant. The screening e�ect has been observed

and studied in Gaussian process (GP) regression and geostatistics

for years [Stein 2002, 2011]. Ordering points progressively from �ne

scales to coarse scales distributes points evenly within each scale,

thereby adequately exploiting the screening e�ect throughout the

factorization. The conditional correlation length of each point is

proportional to the density of the remaining points, resulting in

a constant number of non-negligible entries per column. This is

precisely what Schäfer et al. [2021a] exploited through max-min or-

dering and multiscale sparsity to approximate the sparse inverse of

the Matérn covariance matrix, an approach later adapted to MFS sys-

tems in [Chen et al. 2024]. While these prior works were restricted

to symmetric systems, the e�ciency and accuracy a�orded by the

screening e�ect numerically extends to sparse inverse approxima-

tion of asymmetric BEM operators through our approach: Fig. 4

shows that the sparsity pattern constructed from Eq. (7) closely

matches the ground-truth sparsity obtained by truncating the ex-

act inverse LU factors of a single-layer operator (in this case, for

Laplace’s equation). Wewill also demonstrate in Sec. 4 the e�cacy of

our resulting preconditioner in multiple graphics-related scenarios.

Fallback single-scale sparsity pattern. In the few occasions where

the screening e�ect is too weak to bring conditioning bene�ts, we

resort to a fallback sparsity pattern where now the length scales are

all set equal: in this case, each boundary element has potentially

much denser connections to others, thereby removing the bene�ts of

establishing scales. We will clearly identify in Sec. 3.4 the few types

of BEM problems for which this pattern o�ers a slight improvement

over the multiscale pattern described above.

3.3 Supernodal implementation

As discussed in Sec. 3.1, computing each column of L (orUT) involves

assembling a local matrix extracted from the global BIE system and

solving the associated small linear system with a unit vector as the

right-hand side. This process incurs a memory cost of O(∑9 ∥S9 ∥2)
and a computational cost of O(max9 ∥S9 ∥3), assuming su�cient

threads are available for parallel solves. For boundaries with a large

number of elements, the memory and computational costs of con-

structing our preconditioner would become prohibitively high. Yet,

boundary samples that are close in both space and scales tend to

have very similar interactions. This observation motivates the con-

struction of supernodes, a usual recourse in compute-intensive tasks

to reduce memory and numerical operations by avoiding duplicate

storage and reusing factorization results [Stein et al. 2004; Guin-

ness 2018; Schäfer et al. 2021a; Ferronato et al. 2015]. A supernode,

denoted J, represents a group of nearby points of similar scale to

be treated concurrently, and are thus sets of selected indices. We

identify supernodes {J: }: following the approach in [Chen et al.

2024, Algorithm 1]. Once these supernodes have been found, the

sparsity pattern is extended to enable the reuse of local factorizations:

for each supernode J, we merge all non-zero �ll-ins of its members

from the original sparsity pattern into a new sparsity set:

∀9 ∈ J, S 9 = {8 | 8 ≥ 9 and ∃: ∈ J such that (8, :) ∈S}. (8)

This padding process adds extra entries to each column to align the

sparsity patterns within a supernode. As a result, for any 9,: ∈ J

8

9

:

original �ll-ins in S
added �ll-ins in S

with : > 9 , S: ⊂S 9 (see inset). Instead of

storing a local BIE matrix for each column,

we thus only need to store one for each

supernode, signi�cantly reducing memory

usage as the number of supernodes is far

smaller. The size of each local matrix is deter-

mined by the largest number of non-zero �ll-

ins within the supernode; for example, given a supernode J={8, 9, :}
shown in the inset, the size of the local system is |S8 | × |S8 |.

As mentioned in Sec. 3.1, we perform a local UL factorization of

GS9 ,S9 to evaluate solve L9 and UT

9 . This is because the bottom-right
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subblocks of U and L corresponds to the UL factors of the bottom-

right subblock of GS9 ,S9 : this property thus allows for a one-time

factorization for all nodes within a supernode, permitting the reuse

of the factorization results for triangular solves associated with each

of its member columns, similar to what is done in [Chen et al. 2024,

Algorithm 2]. Note that computing a UL variant is no more complex

than performing a standard LU factorization: if we denote by L(.)
(resp.,U(.)) the lower (resp., upper) triangular factor of a standard
LU factorization as a function of the input matrix G, then the local

UL factors are directly deduced from the LU factors through

U = PrevL(PrevGPrev)Prev, L = PrevU(PrevGPrev)Prev, (9)

where Prev is the exchange (i.e., reverse permutation) matrix which

reorders the sequence {1, 2, .., =} to {=, = − 1, .., 1}.

3.4 Discussion

We conclude our exposition of our preconditioner construction

by discussing some of the choices we made when deriving our

approach, and previewing the cases in which this preconditioner

can be expected to be particularly e�cient in practical uses.

Choice of sparsity patterns for L and U. Notice that we use the

same sparsity pattern for L as for UT, when they could, theoretically,

be di�erent. This strategy was motivated by practical reasons. First

o�, two di�erent sparsity patterns would necessitate constructing

of separate supernode structures, storing two distinct sets of local

Green submatrices for L and U, and performing local factorizations

independently, signi�cantly degrading the e�ciency of the precon-

ditioner construction. Moreover, while an asymmetric notion of

distance dist(·, ·) could be devised to induce anisotropic interac-

tions between samples, computing the induced ordering e�ciently

would be potentially far more di�cult. So while such an asymmetry

between the two sparsity patterns of the inverse factors could po-

tentially help to better deal with irregular sampling of the boundary

Γ, it is unlikely to compensate for the drop in e�ciency.

Expected e�cacy. Our general preconditioner for BEM leverages

the inherent sparsity of the inverse of the BIE matrix, and has roots

in numerical homogenization [Chen et al. 2023], which promises

gains in e�ciency and scalability when combined with an FMM-

accelerated iterative solver such as GMRES to solve boundary inte-

gral equations. Indeed, scalability is dramatically increased as the

entire BIE matrix needs not even be assembled and stored in mem-

ory, allowing the handling of millions of DoFs in practice as we

will demonstrate in Sec. 4. As for e�ciency, one can also describe

expected behaviors for the various types of BEM problems on which

our approach can be used. Our approach exploits the screening e�ect

(as discussed in Sec. 3.2), which holds particularly well in the case of

elliptic problems with Dirichlet boundary conditions; we can thus

expect our preconditioners to be particularly helpful in these cases —

and Sec. 4 will demonstrate orders of magnitude improvements over

existing solvers indeed in these cases. Various factors can, however,

weaken the screening e�ect, lowering the e�ciency of our precondi-

tioner. First, the addition of integral/solution operators associated to

di�erent PDEs will weaken the screening e�ect, since the inverses

of sums of elliptic solution operators are nonlocal. From a statistical

perspective, this is because conditioning on the sum of two random

processes does not give full information about either process and

thus results in weaker screening. The most common example is

the addition of a positive diagonal matrix (the solution operator

of a zeroth order equation) to the BEM matrix, as in the case of

the second-kind Fredholm equations composed of the pure double-

layer potential. Fortunately, this case is typically leading to better

conditioned systems [Steinbach andWendland 2001]. While our pre-

conditioner will be less e�ective, the GMRES-based linear solve will

be quick to produce a solution anyway — and the use of single-scale

sparsity pattern in this case may even improve conditioning e�-

ciency (see Fig. 11). Second, a strong hyperbolic component in the

PDE will also debase this screening e�ect at coarse scales, thus our

preconditioner will help less. A third reason for which the e�ciency

of our preconditioner can decrease is if mixed boundary conditions

are present, or if Neumann boundary conditions are set on a very

complex and wavy boundaries: as the resulting BIE matrix mixes

kernel values of highly-varying magnitudes, the screening e�ect is

less pronounced; but unlike the �rst case, the condition number of

the BIE matrix becomes worse, further hampering GMRES-based

solves. Speci�cally, in this last case that involves mixed boundary

conditions, ordering the density values of the double-layer poten-

tial �rst using a single scale followed by the density values of the

single-layer potential with their associated multiscale length scales

is then advised for maximum e�cacy. Despite these potential fac-

tors diminishing our preconditioning e�cacy, we will show through

concrete applications that our method is always bene�cial: even

when dealing with theoretically very well-conditioned problems

such as double-layer operators, factors such as the irregularity of the

boundary mesh (in particular, for graded or anisotropic simplices)

can drastically a�ect the condition number of the BIE matrix; and in

this case, our preconditioner can still o�er up to an order of magni-

tude acceleration in wall-clock timings. In sum, our preconditioner

is all the more useful when the BIE solution is di�cult to compute.

Table 1. Timing statistics. Problem sizes and timings for the examples

shown in Fig. 3 are provided. For each scene, the cubic Bézier curves are

discretized into � line segments, which are used to generate the final image

at the indicated resolution. Timings for precomputation (pre.), BIE solves

(for RGB channels) with the �×� matrix (slv.) and extrapolation (extrap.) of

the solution through Eq. (10) are detailed, all in seconds. The error tolerance

for BIE solves is set to 10−3, and d is set to 7.5 for all these examples.

scene #curves � image res. C (pre.) C (slv.) C (extrap.)
Astray 417 171471 4096×4096 3.2 33.8 9.1

BehindCurtain 131 140751 4096×4096 2.1 20.8 8.1

PinkFlowers 2964 872901 6144×8192 51.8 213.6 38.3

BlueApple 984 285532 4096×4096 7.9 45.6 11.1

Zephir 87 368774 4096×4096 11.3 82.0 11.9

Roses 3906 944822 5136×6400 61.6 192.0 35.3

4 Applications and Results

We now discuss implementation details, before describing various

experiments we conducted in order to demonstrate both the e�-

ciency and scalability of our technique and to illustrate the di�erent

possible types of BIE that are relevant in graphics applications.

4.1 Implementation details

We implemented our approach described in Sec. 3 in CUDA and C++,

so that the inverse LU factors of the preconditioner are computed
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Fig. 7. Comparison with Jacobi preconditioner.We compare our pre-

conditioner with a Jacobi preconditioner on four examples of Fig. 3. All

precomputations (before the GMRES iterations) including ordering and

sparsity pa�erns are included as evidenced by the flat beginning of our tim-

ing curves. The larger the problem (indicated by the number � of boundary

elements), the larger the speedup.

on the GPU to best utilize parallelism, before being transferred to

the CPU to precondition GMRES iterations. The restart number

for GMRES is set to 40 by default. The matrix-vector product for

preconditioning uses Intel MKL sparse BLAS routines for e�ciency.

Note that all examples in this paper were run on a desktop with an

Intel Xeon w7-3555 CPU (256GB RAM) and an Nvidia RTX 5000

GPU with 32GB of memory. Our open-source code is available at

https://gitlab.inria.fr/geomerix/public/lubie.

Boundary discretization. As pointed out in Sec. 2.2, we discretize

the boundary using piecewise constant functions over simplicial

elements. More formally, the boundary Γ is approximated by a set of

� elements {): }:=1..� with centroids {y: }:=1..� and associated basis

function {i: (y)}:=1..� . The density function f is then interpolated

in a piecewise-constant manner as f (y)=∑�
:=1 f: i: (y) and simi-

larly for g . This choice simpli�es our implementation as the data

required to store and assemble local BIE matrices is more structured

across all boundary elements. For singular integrals where the eval-

uation point is the centroid of an element, we use the closed-form

expressions that are derived in App. A. For other cases, we employ

quadrature rules: an 8-point Gauss-Legendre quadrature for line

segments in 2D, and a 9-point quadrature scheme [Strang and Fix

2008, Table 4.1] for triangles in 3D.

• source point

• target point

Fast multipole method. We also accelerate

boundary integral evaluations by incorporat-

ing FMM in our implementation for both

BIE solves and solution evaluation. We opted

for the FMM2D and FMM3D open-source li-

braries [Gimbutas et al. 2024a,b] to e�ciently

compute the summation D8 =
∑
9 � (x8 , y9 )2 9

and its gradient, where y9 are source points with density 2 9 , and

x8 are target points. To evaluate an integral, we specify as source

points all the quadrature points of the boundary elements, while

target points are set to the centroids of elements where boundary

conditions are imposed (inset). Quadrature weights and element

areas required for integral approximation are included in the density

2 9 , e�ectively treating them as charges at source points.

4.2 Di�usion curves and surfaces

Di�usion curves, introduced by Orzan et al. [2008], is an approach

to generate smoothly-shaded images by di�using colors, given on

each side of prescribed curves, to the entire image at an arbitrary res-

olution. Since this di�usion process requires a BIE solve, Chen et al.

[2024] tested their preconditioners on a few examples, demonstrat-

ing signi�cant gains. However, to ensure a symmetric BIE matrix,

they only performed pixel-based color constraints for which the

D (x) = 1+ (x)
x ∈ Γ+

D (x) = 1− (x)
x ∈ Γ−

the Method of Fundamental Solutions is particu-

larly convenient. However, di�usion images re-

quire an asymmetric system when 1D curves are

prescribed as boundary conditions for colors. In-

deed, the boundary Γ is de�ned as a set of cubic

Bézier curves, and side colors {1− (x), 1+ (x)}x∈Γ
are prescribed as Dirichlet boundary conditions

(see inset). In order to generate an image, each Bézier curve is slightly

o�set along its normal in both directions, creating two displaced

boundaries Γ− and Γ+ separated by a distance of about one pixel.

The solution, continuous across the rest of the domain, is then rep-

resented using a single-layer potential integrated over the boundary

Γ=Γ−∪Γ+ via

∀x ∈ R
2\Γ, D (x) =

∫

Γ

� (x, y)f (y)d�y . (10)

Imposing Dirichlet conditions yields the following BIE system

∀x ∈ Γ,

∫

Γ

� (x, y)f (y) d�y = 1 (x), (11)

where 1 (x) encodes both 1− (x) and 1+ (x). This is a Fredholm inte-

gral equation of the �rst kind, thus typically ill-conditioned.

Di�usion contours and curves. Whether one extracts salient con-

tours from an input image using OpenCV library [Bradski 2000] (as

done in Fig. 1) or directly uses a set of given di�usion curves (as in

Fig. 3), one can discretize this di�usion equation by sampling the

contours or curves uniformly with a pixel-based spacing. All the

elements of the BIE matrix G can then be easily evaluated through

integration over elements, leading to its asymmetry. We �nally set

the two-sided colors for each extracted contour or each curve as

the right-hand side of the BIE system, and solve for the unknown

densities f on the sampled elements, rather than rasterizing the

curves as in [Orzan et al. 2008].

Comparisons. While di�using colors from boundary points sym-

metrizes the discretization and simpli�es the linear solve of the

BIE, it introduces artifacts when the boundary is undersampled

(see Fig. 8). As for asymmetric problems, Chen et al. [2024] pro-

posed to store the Green matrix G and factorize the least squares

system GTG to leverage their symmetric preconditioning; but now

we can directly handle the BIE linear solve without even having

to assemble the entire matrix G. Our method thus enables the ef-

�cient processing of high-resolution di�usion images, as 4K or 8K

images are now possible in seconds or minutes. Timing statistics

for the BIE solve using GMRES are provided in Fig. 7 for several

examples from Fig. 3, clearly demonstrating the e�ectiveness of our
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[Chen et al. 2024] Ours

Fig. 8. Di�usion points vs. di�usion curves. To ensure a symmetric BIE

matrix on which to apply their inverse Cholesky preconditioner, Chen et al.

[2024] generated di�usion images from colored sample points. However,

this approach introduces noticeable artifacts when the number of samples

is insu�icient (le�), which can be prevented by di�using colors along curves

instead as our approach allows (right). Both approaches result in BIE ma-

trices of size 4632×4632. For [Chen et al. 2024], the PCG solver requires

18 iterations to reach an error below 10−3, taking 7.3 seconds in total. Our

GMRES solver converges in 8 iterations for the same error threshold, taking

1.8 seconds in total. The resolution of the generated image is 1246×1246.

preconditioner compared to the Jacobi preconditioner which strug-

gles to reduce the error — especially as the number of boundary

elements gets large. Note that multigrid preconditioners for sparse

matrices do not apply to these large dense matrices due to memory

issues while H -matrix based approaches su�er from unfavourable

cost-accuracy trade-o�s as reported in [Chen et al. 2024], and other

existing preconditioners show only marginal improvement over

Jacobi preconditioning as discussed in Sec. 2.3. Finally, we point out

that while our work follows [Orzan et al. 2008] to impose two-sided

Dirichlet boundary conditions through o�setting Bézier curves and

employs only the single-layer potential, alternative representations

also exist, such as Eq. (1) which incorporates the double-layer po-

tential to describe discontinuities across boundaries [van de Gronde

2010; Bang et al. 2023]. Despite the distinction in representation,

both approaches result in the Fredholm integral equations of the �rst

kind that require to invert only the single-layer operator, making

our preconditioner equally e�ective in both approaches. However,

we found that incorporating the double-layer potential tends to in-

troduce more obvious aliasing artifacts in practice (see Fig. 9), most

likely due to its higher singularity near the boundary which requires

additional e�orts for anti-aliasing such as the adaptive subdivision

described in [Bang et al. 2023].

3D Laplace’s equation. We also tested our method in Fig. 6 by

solving for heat radiation from a complex surface embedded in R
3 .

While BEM is attractive due to o�ering a volumetric-mesh free ap-

proach and dimensionality reduction, large boundary meshes often

challenge existing solvers: the size of the �ne surface discretization

required to capture geometric complexity often make solvers run

out the memory, particularly when attempting to store the full BIE

matrix; if enough memory is available, direct solvers or iterative

solvers can be impractically slow to deal with such large-scale ill-

conditioned BIE. Our preconditioner allows not only to keep the

memory requirements low, but o�ers signi�cant improvements to

through o�setting curves through double-layer potential

Fig. 9. O�se�ing curves vs. double-layer potential. Compared to o�set-

ting the curves (le�) and using only the single-layer potential, introducing

a double-layer potential through Eq. (1) (right) also enables color jumps

across the boundary, with visually similar results. However, the la�er tends

to produce more aliasing artifacts as illustrated by the zoomed-in portion,

likely due to being strongly (rather than weakly) singular near the boundary.

the GMRES solve, a�ording fast convergence when simple existing

preconditioners often fail to converge altogether.

4.3 Magnetostatics

In ferro�uid simulation [Ni et al. 2024], the free-surface of a fer-

ro�uid is submitted to a pressure force due to the magnetic �eld H,

which includes both the external magnetic �eld Hext and the “scat-

tered” magnetic �eld HΩ induced by the ferro�uid itself. Under the

zero-current assumption, Ampère’s law implies that HΩ is curl-free,

hence it is the gradient of a scalar potential, i.e., HΩ (x) = −∇D (x).
Ni et al. [2024] further show that Gauss’s law implies that D is a

harmonic function which satis�es Neumann boundary conditions

mnD (x)+ + jHext · n = (1 + j)mnD (x)− for x ∈ Γ, where j is the

(constant) magnetic susceptibility of the ferro�uid.

The scalar �eld D being harmonic, we can represent it as a single-

layer potential as in Eq. (10).While the potential is continuous across

the boundary, its normal derivative will have a jump expressed as

∀x ∈ Γ, mnD (x)± =

∫

Γ

m� (x, y)
mnx

f (y)d�y ∓
1

2
f (x), (12)

where the exterior and interior normal derivatives are distinguished

by the subscript + and − respectively. By substituting this represen-

tation into the Neumann boundary condition, the BIE we need to

solve for this ferro�uid context becomes:

∀x ∈ Γ,
2 + j

2j
f (x) +

∫

Γ

m� (x, y)
mnx

f (y) d�y = Hext · n. (13)

This equation falls into the category of Fredholm integral equa-

tions of the second kind, where the integral on the left-hand side

corresponds to the adjoint double-layer potential [Steinbach 2007].

As explained in App. A, the double-layer operator has a van-

ishing diagonal when the boundary is discretized with piecewise

constant elements, causing all diagonal entries in the BIE matrix

to be identical. When the susceptibility j is small, diagonal terms

become dominant, improving the conditioning of the BIE system.

In this regime, even simple �xed-point iterations can outperform

Krylov subspace methods [Ni et al. 2024]. However, as j increases,

diagonal terms asymptotically approach 1/2, drastically diminish-

ing the e�ectiveness of �xed-point iterations [Ni et al. 2024, Fig.

13]. Despite this degradation for large j values, the BIE system

retains good properties; speci�cally, it remains a compact operator

on Lipschitz boundaries [Costabel 1988; Steinbach and Wendland

2001], resulting in a spectrum that is signi�cantly better behaved
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Fig. 10. Magnetostatics. In this example, an external magnetic field Hext= (0, 1, 0) is applied and sca�ered by the input model. The resulting field D (x) is
visualized on a vertical slice of the 3D volume, with its gradient corresponding to the induced magnetic field HΩ , and some of its streamlines are shown by

tracing random particles advected in the total magnetic field H=Hext+HΩ . Due to sharp features and thin structures (le�), the Jacobi preconditioner struggles

to converge, while the fixed-point iteration diverges. In contrast, our method converges quite fast. Although smoothing the geometry (right) improves the

e�iciency of the Jacobi preconditioner, it remains significantly slower than our method. All precomputations for our method are included in the timings.
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Fig. 11. Single-scale vs. multiscale sparsity.We tuned the value of d to

achieve a comparable density of the inverse LU factors, with both single-

scale and multiscale pa�erns exhibiting a density of approximately 0.0285%,

albeit with slightly more fill-ins for the multiscale pa�ern. Nonetheless,

the single-layer pa�ern tends to be more e�icient in preconditioning the

double-layer operator. Note that the fixed-point iteration completely loses

its e�iciency under such high susceptibility (j =5×103).

than that of a single-layer operator. Moreover, compared to the

case of di�usion curves, the right-hand side vector of Eq. (13) is

generally smoother: in di�usion curves, numerous discontinuities

arise due to color jumps across the curves, inevitably introducing

high-frequency components that challenges the solver; boundary

normals are varying more smoothly in general. These properties

suggest that GMRES, coupled with a simple Jacobi preconditioner,

can remain reasonably e�ective as shown in Figs. 11 and 15.

Notice that our method loses some of its e�ciency in this case:

the strong singularity of the derivatives and the varying normal �eld

both weaken the crucial screening e�ect on which our approach

heavily relies. Case in point: our experiment demonstrates that us-

ing an identical length scale for all points to build the sparsity leads

to a better convergence than the multiscale sparsity pattern for a

given number of nonzero �ll-ins (see Fig. 11). Furthermore, the ben-

e�t of applying the inverse preconditioner is less signi�cant than

for single-layer operators, indicating that the sparsity of its inverse

has partially diminished. Nevertheless, our method always outper-

forms the Jacobi preconditioner. For smooth and regular meshes,

the speedup may not reach orders of magnitude, but as the surface

becomes more complex (e.g., with many non-smooth features or

multiscale thin structures), traditional methods tend to degrade sub-

stantially, while our approach demonstrates greater resilience to

these geometric complexities, thus still leading to consequential

performance improvements (see Fig. 10).

4.4 Mixed boundary conditions

Mixed boundary conditions are useful in various scenarios. For

instance, one might pin down parts of the object boundary while

applying traction to other parts when simulating an elastic body: this

setup naturally leads to a mix of Dirichlet and Neumann boundary

conditions [James and Pai 1999]. We thus discussed mixed boundary

conditions in our BEM context next.

From representation formula to BIE. If we consider the case of

Laplace’s equation [Sawhney et al. 2023] for a solution that van-

ishes outside the domain Ω, the density functions of the single- and

double-layer potentials reduce to the normal derivative of the solu-

tion and to the solution itself on the boundary respectively (Eq. (1)).

Consequently, the solution within the domain can be evaluated

through the representation formula:

D (x) = −
∫

Γ

m� (x, y)
mny

D (y) d�y +
∫

Γ

� (x, y) mD (y)
mny

d�y . (14)
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Fig. 12. Mixed boundary condition. As the percentage of Dirichlet bound-

ary conditions (listed in brackets) increases, the amount of single-layer po-

tential equations increases in the BIE matrix, and our preconditioner quickly

demonstrates its e�icacy even when the double-layer still dominates, e.g.,

at more than 80%. In contrast, the Jacobi preconditioner becomes worse.

Since no additional density functions are introduced, this repre-

sentation is referred to as the “direct approach” in BEM. Suppose

Γ� ⊂ Γ is the subset of the boundary where we impose Dirichlet

boundary condition D |Γ� =1, and Γ# =Γ\Γ� is the remaining part

where to impose Neumann boundary condition mD/mn|Γ# =6. The

BIE amounts to ensure compatibility between boundary values and

normal derivatives, by linking the unknown solution values on Γ#

and the unknown normal derivatives on Γ� , yielding for any x∈ Γ,

1−j� (x)
2

D (x)+
∫

Γ#

m� (x, y)
mny

D (y)d�y−
∫

Γ�

� (x, y) mD (y)
mny

d�y

= − j� (x)
2

1 (x)−
∫

Γ�

m� (x, y)
mny

1 (y)d�y+
∫

Γ#

� (x, y)6(y)d�y,

(15)

where j� (·) is Γ� indicator function, i.e., j� (x) = 1 if x ∈ Γ� and

j� (x) = 0 otherwise. After discretizing Eq. (15) with piecewise-

constant functions D and mD/mn (assumed to be distinct discrete

functions) for each centroid of the boundary elements of Γ, we get

an asymmetric BIE linear system linking their coe�cients, from

which the �nal solution can be evaluated anywhere through Eq. (14).

Hybrid sparsity pattern. To address the strong screening e�ect

of the single-layer potential and the attenuated screening e�ect of

the double-layer potential, we adopt a hybrid strategy that combines

single-scale and multiscale patterns for the inverse factors to precon-

dition the BIE with mixed boundary conditions. Speci�cally, we

�rst compute the reverse max-min ordering solely on the Dirichlet

boundary (Γ� ), generating the sequence of degrees of freedom from

8� to 8�−|Γ� |+1 as the coarse scale, characterized by their length scale

;8: . Next, we put all Neumann boundary points to the sequence to

the beginning as the �ne scale with a uniform length scale ;8�−|Γ� |+1 .

With the ordering and associated length scales, we construct the

sparsity pattern based on Eq. (7) and its supernodal extension as we

discussed in Sec. 3.3.

Results and discussion. In Fig. 12, we illustrate the e�cacy of

our preconditioner with respect to the percentage of elements on

the Dirichlet boundary (Γ� ), where mD/mn needs to be solved. For
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Fig. 13. Helmholtz equation. For the Helmholtz equation △D+:2D = 0

using the single-layer BEM, a Dirichlet boundary condition (based on a

fixed spherical wave function) is imposed on a turbine surface discretized

with 16.2 triangular elements. The real part of the solution is displayed on

a cross section (top). As the wavenumber : increases, our method gradually

loses its superiority over the Jacobi preconditioner, due to the weakening of

the screening e�ect caused by increasingly oscillatory kernels.

comparisons, we randomly sample a number of points {q8 }8 in
the domain, and assign random values {f8 }8 to these points as

charges. A harmonic function can be subsequently constructed

as 5 (x) =

∑
8 f8 (q8 )/∥x − q8 ∥. We then sample the function or

its normal derivative on Γ� and Γ# , respectively, to initialize the

mixed boundary conditions. Fig. 12 shows that our method always

leads to signi�cant speedup even when the Neumann boundary

condition becomes dominant, e.g., when it is used for more than

80% of the boundary. It is also worth mentioning that even in the

presence of mixed boundary conditions, it is technically possible

to formulate a symmetric system by incorporating an another hy-

persingular BIE [Steinbach 2007, Equation 7.19] for the Neumann

boundary, alongside Eq. (15) for the Dirichlet boundary, and further

discretizing the two with a symmetric Galerkin approach. In prac-

tice, however, computing the integral of hypersingular kernels and

adopting FMM with the four di�erent kernels involved is complex,

whereas simply forgoing symmetry is far simpler.

4.5 Beyond Laplace’s equation

While we mostly focused on Laplace’s equation until now, it bears

mentioning that the Green’s functions for linear elasticity equations,

despite being vector-valued, also scale as O(1/A ) in 3D, thus making

our approach applicable to them as well. While this is also true for

the low-wavenumber Helmholtz equation, this particular case intro-

duces additional challenges. Even through a symmetric Galerkin

discretization, the inverse Cholesky preconditioner of Chen et al.

[2024] is not applicable, as the resulting BIE matrix G, while sym-

metric, is not Hermitian. One possible workaround that the authors

mentioned is to solve the system in a least-squares sense. However,

this approach incurs signi�cant memory and precomputation over-

heads, mostly for two reasons. First, assembling the local matrix

(GTG)S9 ,S9 to compute the inverse factors becomes considerably

more expensive: each matrix entry requires the evaluation of the
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Fig. 14. Scalability. In this di�usion curve example, we sampled the Bézier

curves at various resolutions to generate BIEs with varying sizes. The timing

plot illustrates that the time required for precomputation, BIE solves (with

error tolerance of 10−3), and extrapolation (through Eq. (10)) all scale near-

linearly with the number of boundary elements. This is achieved through

the scalability of FMM and the e�icacy of our preconditioner — the number

of iterations only increases from 7 to 13 as � grows from 65K to 1.1M.

Consequently, our method can handle very large problems. For instance, the

top di�used image contains 153M pixels colored by 1.1M boundary elements.

Even when zoomed in 32×, the image shows no noticeable aliasing artifacts.

dense inner product
∑�
:=1 G8:G: 9 . This step can be over 100 times

slower than the actual factorization plus iterative solves even on a

small 10K system (see [Chen et al. 2024, Fig. 11]). Second, the itera-

tive solver now requires two dense matrix-vector multiplications per

iteration to compute GTGx. So unless the symmetric preconditioner

accelerates convergence by at least a factor two, these additional

costs will outweigh the bene�ts. Such acceleration is unlikely in

practice however, since the least-squares problem squares the condi-

tion number of the original matrix, further hindering convergence.

In contrast, our novel LU-based preconditioning applies directly,

avoiding these di�culties and remaining e�ective for low-frequency

Helmholtz problems. However, when the wavenumber : increases,

the associated Green’s function� (x, y)= exp(8: ∥x−y∥ )
4c ∥x−y∥ becomes more

oscillatory, gradually weakening the screening e�ect and degrading

the performance of our method (see Fig. 13), as expected: high-

frequency Helmholtz problems are notoriously di�cult.

5 Conclusion

In this paper, we have formulated a lightning-fast approach to scal-

ing up the linear solves involved in boundary element methods. In

particular, we showed that the BIE matrix never needs to be fully

stored in memory contrary to previous approaches such as [Chen

et al. 2024] on dealing with least-squares problems, o�ering far im-

proved scalability. The resulting preconditioner, based on sparse

LU factors approximating the inverse of the BIE matrix, was also

proven to signi�cantly accelerate GMRES solves — from about a

factor two in the worst case presented in this paper, to orders of

magnitude for large examples like Fig. 1 since our solver exhibits a

near-linear complexity (Fig. 14) compared to the cubic complexity

of direct solvers and without steep increase in the required number

of iterations as the discretization is re�ned.

0 · 100 2 · 101 4 · 101 6 · 101 8 · 101 1 · 102
10−17

10−8

101

iterations

re
l.
er
ro
r2

First-kind eq. w/ our precond.

First-kind eq. w/ Jacobi precond.

Second-kind eq. w/ our precond.

Second-kind eq. w/ Jacobi precond.

Fig. 15. Solving single vs. double potentials. We compare the perfor-

mance of a BIE solve for a single-layer vs. a double-layer operator, using

Jacobi and our inverse-LU preconditioning for the problem in Fig. 2, which

of course result in the same solution within the ki�en-shaped domain. The

resulting error curves during GMRES solves (in log-log scale) are represen-

tative of the examples presented throughout the paper: although Fredholm

equations of the first kind are quite ill-posed, our method significantly ac-

celerates their solves, achieving orders-of-magnitude speedups; on the other

hand, Fredholm equations of the second kind have inherently be�er spectral

properties, but the e�ect of our preconditioning is less pronounced, resulting

in slightly less e�icient solves. Therefore, we recommend formulating any

BEM problem with a single-layer potential whenever possible.

Take-home message. Fredholm integral equations of the �rst kind

involving a single-layer potential are often considered very ill-

posed [Yuan and Zhang 2019] and thus numerically challenging.

However, the e�cient preconditioner for iterative solvers we pro-

pose in this paper is not only exploiting the sparsity of the inverse

BIE operator, but also the screening e�ect of the associated PDEs,

which signi�cantly alleviates these numerical di�culties and o�ers

an appealing numerical tool for boundary element methods. From

a practitioner perspective, if a boundary problem can be formu-

lated with a single-layer operator dominating the BIE, our approach

is guaranteed to be highly bene�cial. In contrast, for second-kind

Fredholm integral equations, which are inherently well-conditioned,

simpler methods may often su�ce, especially when the boundary

geometry is simple and its discretization is regular: in such cases,

the performance gains of our method are typically less pronounced,

as illustrated in Fig. 15. Nonetheless, when solving problems with

multiple right-hand side vectors so that our precomputations can

be done once and for all, the cumulative time savings achieved by

our method can still be considerable.

Future work. Developing a more e�ective preconditioner for BIEs

that are Fredholm integral equations of the second kind would be a

valuable complement to our work. It would, however, require �nd-

ing another property, akin to the screening e�ect, which could be

leveraged instead. Another avenue of improvement is the problem-

adaptive selection of the sparsity pattern, akin to the recent work

of Huan et al. [2023]. Additionally, we believe that for rectangular

systems requiring the solution of a least-squares problem, an e�-

cient inverse preconditioner could be constructed based this time

on QR factorization. The use of QR decomposition could further em-

brace randomized algorithms [Rokhlin and Tygert 2008] to reduce

memory and computational cost while maintaining a high quality

of preconditioning. Finally, improving the implementation of our

preconditioner through advanced GPU-level optimization would
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likely further improve our timings. Potential improvements would

undoubtedly strengthen the capability of boundary-based methods

for solving an increasingly diverse range of problems.
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A Computing singular integrals

When an evaluation point x lies on one of the boundary elements,

the integrals of the Green’s functions and their normal derivatives

become both singular. To ensure better accuracy, we employ analyt-

ical evaluation instead of resorting to numerical quadrature rules

for these singular integrals. To begin with, the normal derivative

of the Green’s function is strongly singular, and its integral exists

only in the sense of the Cauchy principal value. For piecewise con-

stant elements, this integral vanishes as the normal vector is always

orthogonal to the tangent vector x−y [Pozrikidis 2002, Sec. 5.2.3].

Consequently, the discrete double-layer operator has a zero diagonal.

In contrast, the case of the Green’s function is more involved. Since

it is weakly singular, its integral exists in the usual sense. In the

following, we detail the calculation of the singular integral of the

Green’s function of the Laplace operator in 2D and 3D respectively

— most other operators can be handled in a similar fashion.

Over a 2D line segment. In 2D, the Green’s function of the Laplace

operator is given by − log( ∥x−y∥ )/2c . For a point x on a boundary

element (a, b), the integral can be decomposed into two parts: the

integration �1 over (a, x) and �2 over (x, b). Through the parameteri-

zation y = x+ Cp for C ∈ (0, 1) and p = b− x, the integral over (x, b)
is easily evaluated through

�2 =

∫ b

x

log(∥x−y∥) dC =∥p∥
∫ 1

0

log(∥p∥C) dC = ∥p∥(log(∥p∥ −1)) .

The other integral �1 is dealt with in a similar fashion.

Over a 3D triangle. The 3D Laplace Green’s function is 1/4cA . For
a triangular element △abc and an evaluation point x located on this

triangle, we similarly decompose the integral over △abc into the

sum of the three integrals �1, �2, �3 over the domains △xab, △xbc, and

△xca respectively, formed by the evaluation point and the three

triangle vertices. Let us focus on the computation of one of the

x

b

a

c

p

q

three subdomains, as one can proceed similarly

for each of them. For △xab, we de�ne p=a−x
and q=b−x (see inset). A point y within △xab

is parameterized using barycentric coordinates

(U, V) as y = x+Up + Vq where U, V ≥ 0 and

U+V ≤ 1. The integral over △xab is then evaluated as:

�1 =

∫

△xab

1

∥x − y∥ d�~ = 2|△xab |
∫ 1

0

dU

∫ 1−U

0

dV
1

∥Up + Vq∥

= 2|△xab |
∫ 1

0

dU

∫ 1−U

0

dV
1

√
�U2 + �UV +�V2

,

where the constant �, �,� are de�ned as pTp, 2pTq and qTq respec-

tively. Now we can compute the above integral in polar coordinates,

using the transformation U =d cos(\ ) and V=d sin(\ ), where d ≥ 0

and \ ∈ [0, c/2]. The area element transforms as d� = dddd\ . Sub-

stituting these terms into the integral yields:

�1 = 2|△xab |
∫ c

2

0

d\
√
� cos2 (\ )+� sin(\ ) cos(\ )+� sin2 (\ )

∫ ' (\ )

0

dd,

where the integration radius '(\ ) along the direction \ is given as

'(\ )=1/(sin(\ ) + cos(\ )). Finally, we reach the expression:

�1 =
2|△xab |

(
tanh−1

(
2�−�

2
√
�
√
�−�+�

)
− tanh−1

(
�−2�

2
√
�
√
�−�+�

))

√
� − � +�

=

2|△xab |
(
tanh−1

(
q· (p−q)
∥q∥ ∥p−q∥

)
− tanh−1

(
p· (q−p)
∥p∥ ∥q−p∥

))

∥p − q∥ .

B A variational definition of Eq. (2)

It can be easily veri�ed (by forming the Lagrangian and deriving

its optimality conditions through variations of US and LS) that our

de�nition of the inverse LU factors given by Eq. (2) is the optimal

solution of an extremization problem:

extremize Tr
(
(I − USU) (I − LLS)

)

s. t. diag(USGLS) = 1 and diag(LS) = 1,

whereU and L represent the global UL factors ofG such thatG = UL.

Note that if we remove the unit diagonal constraint for L, then

we get an expression exactly equivalent to the Kaporin’s solution

for symmetric matrices G. However, for asymmetric systems, this

simpli�ed form of the variational problem would require access to

the diagonal terms {U9, 9 , L9, 9 } 9 of global inverse G−1 and would

also involve square roots which may breakdown factorization due

to the presence of negative values. We thus add this constraint in

our case to bypass these two issues.
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