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This document supplements our SIGGRAPH Asia 2025 paper by
providing more figures and context on the foundations of our ap-
proach, as well as detailed computations and formulations to which
the main text only briefly alludes.

A Background

We first recap the mathematical foundations upon which we build
our approach. In particular, we review a number of basic terms
(pushforward, 𝜇-a.e., dual OT formulation, etc) used in the paper.

A.1 Primer on measure theory

Measure theory is concerned with measuring a notion of “size” (or
equivalently, weight) for some subsets of a given setX, generalizing
the geometric notions of length, areas, etc. In general, we are inter-
ested in measuring subsets ofX from a family ΣX ⊂ 2X (a 𝜎-algebra)
that contains the empty set and is stable under complementary and
countable union. The pair (X, ΣX) is then called a measurable space,
and an element of ΣX is called a measurable subset.

Measurable maps. Given measurable spaces (X, ΣX) and (Y, ΣY),
a map 𝜙 : X→Y is called measurable if it associates measurable
subsets to measurable subsets, i.e., ∀𝑌 ∈ΣY , 𝜙

−1 (𝑌 ) ∈ΣX .

Measures. A measure 𝜇 is a weight assignment 𝜇 : ΣX → R+∪∞
which satisfies that 𝜇 (∅)=0 and, for any pairwise-disjoint countable
family {𝑋𝑖 }𝑖∈N, the measure of a union is the sum of its measures,

𝜇
( ⋃
𝑖∈N
𝑋𝑖
)
=

∑︁
𝑖∈N

𝜇 (𝑋𝑖 ). (1)

A measurable subset 𝑋 ⊂X is said to be negligible w.r.t 𝜇 if 𝜇 (𝑋 )=0,
and a proposition 𝑃 (·) on X is said to be true 𝜇-almost everywhere
(denoted as 𝜇-a.e. in the paper) if the set {𝑥 ∈ X|𝑃 (𝑥) = false} is
negligible w.r.t. 𝜇. Finally, the total mass of 𝜇 is the quantity 𝜇 (X) ∈
R+ ∪ {∞}; if it is equal to 1, then 𝜇 is a probability measure.

Integration. Once we have a measure 𝜇 onX, we can formally define
the Lebesgue integral of a non-negative measurable function 𝑓 :
X → R+ against 𝜇 in the following manner:∫

X
𝑓 𝑑𝜇 := sup

{∑︁
𝑖∈N

𝛼𝑖𝜇 (𝑋𝑖 )
���

measurable︷    ︸︸    ︷∑︁
𝑖∈N

𝛼𝑖1𝑋𝑖 ≤ 𝑓 𝜇 − a.e.
}
. (2)
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Integrable functions are simply measurable functions 𝑓 : X → R
such that

∫
X |𝑓 | 𝑑𝜇<∞, and we define their integrals via∫
X
𝑓 𝑑𝜇 :=

∫
X

max(𝑓 , 0) 𝑑𝜇 −
∫
X

max(−𝑓 , 0) 𝑑𝜇. (3)

Push-forward. For any given measurable map 𝜙 :X→Y, the notion
of push-forward specifies how a measure on X is naturally “trans-
ported” by 𝜙 onto a measure on Y. Formally, the push-forward 𝜙♯𝜇
of a measure 𝜇 on ΣX under 𝜙 is:

∀𝑌 ∈ΣY , (𝜙♯𝜇) (𝑌 ) := 𝜇
(
𝜙−1 (𝑌 )

)
. (4)

It generalizes the notion of change of variables in integration: if a
function 𝑔 : Y → R is integrable against 𝜙♯𝜇, then∫

Y
𝑔 𝑑 (𝜙♯𝜇) =

∫
X
𝑔 ◦ 𝜙 𝑑𝜇. (5)

Lebesgue spaces. For 𝑝 ∈ N>0, consider the functional spaces of the
form L𝑝 (X; 𝜇):=

{
𝑓 :X→R𝑑 measurable

��∫
X|𝑓 |

𝑝𝑑𝜇<∞
}
. Using the

equivalence relation R such that 𝑓 R𝑔 ⇐⇒ 𝑓 =𝑔 𝜇 − a.e., Lebesgue
spaces 𝐿𝑝 (X; 𝜇) are defined as the quotient spaces L𝑝 (X; 𝜇)/R
equipped with the norm ∥ 𝑓 ∥𝐿𝑝 (X;𝜇) :=

(∫
X |𝑓 |

𝑝𝑑𝜇
)1/𝑝 ,making 𝐿𝑝 (X; 𝜇)

a Banach space. For 𝑝=2, the norm comes from the scalar product
⟨𝑓 , 𝑔⟩𝐿2 (X;𝜇 ) :=

∫
X
𝑓 𝑔 𝑑𝜇, (6)

making 𝐿2 (X; 𝜇) a Hilbert space.
Note that we can naturally extend this notion of Lebesgue spaces
to functions with values in R𝑑 , defining in particular the space of
interest 𝐿2 (X,R𝑑 ; 𝜇), denoted FX for readability in the paper.

A.2 Basics of optimal transport

Given two measurable spaces X and Y and two probability mea-
sures, resp. 𝜇 and 𝜈 , on these spaces, we can talk about the cost of
transporting one measure onto the other.
Monge problem. We can for instance try to minimize the Monge
optimal transport (OT) cost

∫
X 𝑐

(
𝑥,𝑇 (𝑥)

)
𝑑𝜇 (𝑥) (where 𝑐 (𝑥,𝑦) is a

predefined cost of transporting “mass” from 𝑥 ∈X to 𝑦 ∈Y) over all
measurable maps𝑇 :X→Y such that𝑇♯𝜇 = 𝜈 . Alas, there might not
be such a map, and minimizing this cost is computationally difficult
as the set of Monge maps do not form a convex set in general.
Kantorovitch extension. To overcome this issue, one may consider
more general transport plans between 𝜇 and 𝜈 , which are probability
measures 𝜋 on X×Y with marginals 𝜇 on X and 𝜈 on Y. The so-
called Kantorovich optimal transport problem is a convex relaxation
of the Monge problem, for which minimizers defined as

arginf
𝜋∈Π (𝜇,𝜈 )

∫
X×Y

𝑐 (𝑥,𝑦) 𝑑𝜋 (𝑥,𝑦) . (7)
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can be shown to exist under mild conditions. The minimum can also
be found using the dual Kantorovich problem, formulated as

sup
𝛼∈𝐿1(X;𝜇 )
𝛽∈𝐿1(Y;𝜈 )

∫
X
𝛼 𝑑𝜇 +

∫
Y
𝛽 𝑑𝜈

s.t. 𝛼 (𝑥) + 𝛽 (𝑦) ≤ 𝑐 (𝑥,𝑦) 𝜇 ⊗ 𝜈 − a.e. (8)

Entropic regularization. Adding entropic regularization to the objec-
tive function of the primal OT problem turns it into

inf
𝜋∈Π (𝜇,𝜈 )

∫
X×Y

𝑐 (𝑥,𝑦) 𝑑𝜋 (𝑥,𝑦) + 𝜖𝐻 (𝜋) (9)

where 𝐻 (𝜋) = KL(𝜋 |𝜇 ⊗ 𝜈) (where KL means Kullback–Leibler
divergence), and the dual problem now involves a “soft” penalty
replacing the inequality from Eq. (8), allowing faster solvers such
as Sinkhorn iterations [Cuturi 2013].

Typical transport costs. The choice of transport cost 𝑐 (𝑥,𝑦) in Eq. (7)
is key to establishing a useful transport plan for a given applica-
tion. We can leverage particular (linear combinations of) trans-
port costs to promote a particular behavior of the resulting op-
timal transport plan. In many cases, the Euclidean cost function
𝑐 (𝑥,𝑦)= |𝑥 −𝑦 |2 is often inadequate because of its high dependency
on (near) isometries: it relies too much on the given embeddings
and not enough on the intrinsic geometry of the objects. The knowl-
edge of 𝑘 pointwise landmarks (𝑥1, · · · , 𝑥𝑘 ) ∈ X𝑘 and their corre-
spondences (𝑦1, · · · , 𝑦𝐾 ) ∈ Y𝑘 , available in many applications, can
instead be exploited to derive an intrinsic transport cost:

𝑐 (𝑥,𝑦) =
𝐾∑︁
𝑘=1

���𝜃 (𝑑X (𝑥𝑘 , 𝑥)) − 𝜃 (𝑑Y (𝑦𝑘 , 𝑦)
) ���2, (10)

where 𝜃 :R>0 →R is any continuous monotonous function while
𝑑X and 𝑑Y are the geodesic distances of X and Y respectively. In
applications where plans should optimally be with isometric maps
(or more generally, maps with specific geometric properties), local
shape (feature) descriptors that are invariant to isometries can also
be leveraged to design transport costs: if descriptors 𝐹 :X→R𝑁

and 𝐺 :Y→R𝑁 are such that if there exists an isometry𝜓 :X→Y
with𝜓♯𝜇=𝜈 , then 𝐹 =𝐺 ◦𝜓 , the cost:

𝑐 (𝑥,𝑦) =


𝐹 (𝑥) −𝐺 (𝑦)



2 (11)
can help steer the optimal plan to have the intended property —
where typical feature descriptors 𝐹 and 𝐺 may include the Heat
Kernel Signature [Sun et al. 2009], diffusion maps [Coifman et al.
2005], or any other isometry-invariant signature.

B About variance loss

For a plan 𝜋 ∈Π(𝜇, 𝜈), let 𝑔∈FY and 𝜙 =−→𝑚𝜋∈FX . One has:

Var𝜈 :=
∫
Y

��𝑦 − 𝜈 ��2 𝑑𝜈 (𝑦) =∫
X×Y

��𝑦 − 𝜙 (𝑥) + 𝜙 (𝑥) − 𝜈︸︷︷︸
=E𝜇 [𝜙 ]

��2𝑑𝜋 (𝑥,𝑦)
=

∫
X×Y

��𝑦 − 𝜙 (𝑥)��2 𝑑𝜋 (𝑥,𝑦)
+
∫
X

��𝜙 (𝑥) − E𝜇 [𝜙]
��2 𝑑𝜇 (𝑥)︸                           ︷︷                           ︸

=Var𝜇 [𝜙 ]

−
∫
X×Y

(
𝑦 − 𝜙 (𝑥)

)
·
(
𝜙 (𝑥) − E𝜇 [𝜙]

)
𝑑𝜋 (𝑥,𝑦) .

(12)

This last integral vanishes since, by definition of 𝜙 ,∫
X×Y

𝑦 ·
(
𝜙 (𝑥) − E𝜇 [𝜙]

)
𝑑𝜋 (𝑥,𝑦) =

∫
X
𝜙
(
𝜙 − E𝜇 [𝜙]

)
𝑑𝜇︸                    ︷︷                    ︸

=
∫
X×Y 𝜙 (𝑥 ) ·

(
𝜙 (𝑥 )−E𝜇 [𝜙 ]

)
𝑑𝜋 (𝑥,𝑦)

and of course
∫
X 𝐹 (𝑥) 𝑑𝜇 (𝑥) =

∫
X×Y 𝐹 (𝑥) 𝑑𝜋 (𝑥,𝑦). Therefore, one

has that Var𝜈 = Var𝜇 [𝜙] +
∫
X×Y

��𝜙 (𝑥) − 𝑦��2 𝑑𝜋 (𝑥,𝑦). As a conse-
quence, Var𝜈 ≥Var𝜇 [𝜙]’. Now, if equality holds between Var𝜈 and
Var𝜇 [𝜙], then we can deduce that

0 ≤𝑊2
(
𝜙♯𝜇, 𝜈

)2

= inf
𝜋 ′∈Π (𝜙♯𝜇,𝜈 )

∫
R𝑑×R𝑑

|𝑥 − 𝑦 |2 𝑑𝜋 ′ (𝑥,𝑦)

= inf
𝜋”∈Π (𝜇,𝜈 )

∫
X×Y

|𝜙 (𝑥) − 𝑦 |2 𝑑𝜋”(𝑥,𝑦)

≤
∫
X×Y

|𝜙 (𝑥) − 𝑦 |2 𝑑𝜋 (𝑥,𝑦) = 0,

(13)

i.e.,𝑊2
(
𝜙♯𝜇, 𝜈

)
= 0 — which means that 𝜙♯𝜇 =𝜈 . Finally, note the

converse is true as well trivially: if 𝜙♯𝜇=𝜈 , then Var𝜈 =Var𝜇 [𝜙].

C Gradient expression for Q̂

Using 𝜆(𝜙)=−A𝜙 − 𝑏, we have
Q̂ (𝜙) = 1

2 ⟨𝜙,A𝜙⟩FX − 𝐸𝑂𝑇𝜖
(
𝜆(𝜙)

)
= 1

2 ⟨𝜙,A𝜙⟩FX − inf
𝜋∈Π (𝜇,𝜈 )

[ ∫
𝑐𝜆 (𝜙 ) 𝑑𝜋 + 𝜖.𝐻 (𝜋)︸                       ︷︷                       ︸

𝐹 (𝜋,𝜙 )

]
(14)

where 𝑐𝜆 (𝑥,𝑦) = 𝑐 (𝑥,𝑦) − 𝜆(𝑥) · 𝑔(𝑦). The gradient of the first term
is clearly A𝜙 . For the second term, remark that since 𝐹 is continuous
and since the problem 𝑚𝑖𝑛𝜋𝐹 (𝜙, 𝜋) has a unique solution 𝜋 [𝜙],
Danskin’s theorem implies ∇

(
inf𝜋 𝐹 (𝜙, 𝜋)

)
= ∇𝜙𝐹

(
𝜙, 𝜋 [𝜙]

)
.

Noting that

∇𝜙𝐹 (𝜙, 𝜋) = ∇𝜙
∫

(A𝜙) (𝑥) · 𝑔(𝑦) 𝑑𝜋 (𝑥,𝑦)

= ∇𝜙
〈
A𝜙,−→𝑚𝜋

〉
FX

= A−→𝑚𝜋

(15)

where the last equality holds by symmetry of A, we end up with:
∇Q̂(𝜙) = A𝜙 − A𝜋 [𝜙]∗𝑔. (16)

D Discrete optimal transport

In this section, we provide details on how optimal transport of
surface meshes is achieved in practice in our OT context.
Consider two discrete probability measures 𝜇 and 𝜈 in R𝑑 with

𝜇 :=
𝑀∑︁
𝑖=1

𝜇𝑖 𝛿𝑥𝑖 , 𝜈 :=
𝑁∑︁
𝑗=1

𝜈 𝑗 𝛿𝑦 𝑗 , (17)

where 𝜇𝑖 , 𝜈 𝑗 are positive weights such that
∑
𝑖 𝜇𝑖 =

∑
𝑗 𝜈 𝑗 =1, 𝛿𝑥 rep-

resents a Dirac mass at a point 𝑥 ∈ R𝑑 , and (𝑥1, · · · , 𝑥𝑀 ) ∈ R𝑑×𝑀 ,
(𝑦1, · · · , 𝑦𝑁 ) ∈R𝑑×𝑁 are two sets of points in R𝑑 .
In our examples, such discrete measures can be derived from surface
meshes, where the {𝑥𝑖 }𝑖 (and/or {𝑦 𝑗 } 𝑗 ) are the vertex positions of
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Fig. 1. Texture for Dog to camel Example. A source texture (left) on the
dog is pushed-forward (transferred) by the forward mean map (right) shown
in the teaser of the main text.

the mesh, and the associated weights are given by the normalized
1-ring area of each vertex, that is:

𝜇𝑖 := 𝑍 −1
∑︁

𝜏∈𝑇 |𝑥𝑖 ∈𝜏
𝑎𝑟𝑒𝑎(𝜏), with 𝑍 = 3

∑︁
𝜏∈𝑇

𝑎𝑟𝑒𝑎(𝜏), (18)

where we used 𝑇 to refer to the set of faces of the triangle mesh.
The discrete measures can also derive from regular grids, in which
case we use 𝜇𝑖 = 1

𝑀
(resp. 𝜈 𝑗 = 1

𝑁
) and the (𝑥𝑖 )𝑖 (and (𝑦 𝑗 ) 𝑗 ) are the

centers of the cells.
The entropic optimal transport problem between 𝜇 and 𝜈 is then

inf
𝚷∈R𝑀×𝑁 C : 𝚷 + 𝜖 𝐻 (𝚷)

s.t.
∑
𝑗 Π𝑖 𝑗 = 𝜇𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑀∑
𝑖 Π𝑖 𝑗 = 𝜈 𝑗 ∀ 1 ≤ 𝑗 ≤ 𝑁

(19)

where C is a 𝑀 × 𝑁 matrix with coefficients 𝐶𝑖 𝑗 = 𝑐 (𝑥𝑖 , 𝑦 𝑗 ) (for
some cost function 𝑐), the “:” symbol denotes the Frobenius scalar
product, 𝐻 (𝚷) :=

∑
𝑖 𝑗 Π𝑖 𝑗

(
log(Π𝑖 𝑗 ) − 1

)
, and 𝜖 > 0. Our method

requires to solve this kind of problem multiple times with various
cost functions 𝑐 (., .), for which we rely on Sinkhorn’s algorithm and
its stable and efficient variants based on log-domain, symmetrization
and annealing [see Feydy 2020, Alg. 3.5], that we implemented on
the GPU for a much faster computation, as it parallelizes well.

E Practical Hessian-based energy for surfaces

In this section, we provide amore in-depth derivation of our Hessian-
based energy function for triangle meshes.

E.1 Continuous case

Let X ⊂ R3 be a compact smooth surface patch and 𝜑 :X → R be s
smooth function defined over this patch. The Hessian operator H[·]
on functions of X returning at each point 𝑥 ∈X a 3×3 matrix can
be defined through the Riemannian gradient operator ∇X on X via

∀𝑥 ∈ X, H[𝜑] (𝑥) :=∇X (∇X𝜑)(𝑥) PX (𝑥), (20)
where PX (𝑥) denotes the orthogonal projection operator on the
tangent plane 𝑇𝑥X at 𝑥 . Note that ∇X𝑢 is to be understood coordi-
nate by coordinate if 𝑢 has values in R𝑑 ; i.e., ∇X𝜑 (𝑥) returns a 3D
vector in 𝑇𝑥X , while ∇X (∇X𝜑) (𝑥) returns a 3×3 matrix, explaining
the final presence of the orthogonal projection operator PX (𝑥) to
remove the components normal to X at 𝑥 in the rows of the matrix.

Note that functions of the form 𝜑 (𝑥)=𝑎 ·𝑥 +𝑏 are not, in general, in
the kernel of H: we only compute tangent variations of 𝜑 since it is

only defined onX. If we had access to a smooth "extension" 𝜑̃ : R3→
R (still satisfying 𝜑̃ (𝑥) =𝜑 (𝑥) ∀𝑥 ∈ X), we could simply compute
∇2𝜑̃ everywhere on X, with ∇ being the gradient in R3. Usually,
no such extension is given, but since in the end we are interested
in the energy



∇2𝜑̃


2
FX
, we might as well choose an extension that

minimizes this energy. Now, for any 𝑥 ∈ X, ∇2𝜑̃ (𝑥) is a 3×3 matrix
that can be decomposed into four orthogonal parts as follows:

∇2𝜑̃ (𝑥)= PX (𝑥)∇2𝜑̃ (𝑥)PX (𝑥)
+ PX (𝑥)∇2𝜑̃ (𝑥) (𝐼 − PX (𝑥))
+ (𝐼 − PX (𝑥))∇2𝜑̃ (𝑥)PX (𝑥)
+ (𝐼 − PX (𝑥))∇2𝜑̃ (𝑥) (𝐼 − PX (𝑥)),

(21)

and the squared Frobenius norm of ∇2𝜑̃ is simply the sum of the
squared Frobenius norm of each of these four terms. But it is always
possible to choose a 𝜑̃ such that the last term vanishes for all 𝑥 ∈
X without affecting the other components. Note also that, since
∇2𝜑̃ (𝑥) is always symmetric, the second and the third term are
the same up to a transposition. Now, since ∇X𝑢 =PX (∇𝑢) for 𝑢 :
R3 → R3 and that 𝐼 − PX can actually be rewritten 𝒏 ⊗ 𝒏 (where
n : X→R3 denotes the Gauss map of X), we just need to minimize
∥∇X∇𝜑̃ ∥2

FX + ∥(∇X∇𝜑̃) · 𝒏∥2
FX .

Since we do not want to build 𝜑̃ over the whole R3, we make a
change of variable using 𝑣 = ∇𝜑̃ , where 𝑣 : X → R3 will have to
satisfy the constraint PX (𝑥)𝑣 (𝑥) =∇X𝜑 (𝑥), which is sufficient for
our needs. The Hessian matrix for the optimal 𝜑̃ is then given by
∇𝑣 , where 𝑣 is a solution of:
inf

{
∥∇X𝑣 ∥2

FX +∥(∇X𝑣) ·𝒏∥2
FX

��� 𝑣 ∈FX, PX (𝑥)𝑣 (𝑥)=∇X𝜑 (𝑥) ∀𝑥 ∈X
}
.

The value of this infimum is precisely the energy 𝑒 (𝜑) defined in Eq.
(27) of the main paper. Indeed, the constraint can even be made more
explicit by writing the decomposition 𝑣 (𝑥) =∇X𝜑 (𝑥) − ℎ(𝑥)n(𝑥),
for some function ℎ ∈FX which is the only remaining free variable.
This leads us to 𝑒 (𝜑)=infℎ∈FX 𝑒 (𝜑,ℎ) with:

𝑒 (𝜑,ℎ) = ∥∇X (∇X𝜑 + ℎ𝒏)∥2
FX + ∥(∇X𝜑 + ℎ𝒏) · 𝒏∥2

FX . (22)

Notice that by construction, theminimizers of this energy are exactly
the affine functions of R3, i.e. {𝑥 ∈ X ↦→ 𝑎 · 𝑥 + 𝑏 | 𝑎, 𝑏 ∈ R3}.

E.2 Implementation on triangle meshes

Consider a triangle mesh (𝑉 , 𝐸,𝑇 ) in R3 defined by vertices𝑉 , edges
𝐸 and triangles𝑇 . We use the space F𝑉 of continuous functions that
are affine on each triangle, i.e.,

F𝑉 :=
{∑︁
𝑖∈𝑉

𝑓𝑖 𝜑𝑖
�� 𝑓𝑖 ∈ R

}
(23)

where the set {𝜑𝑖 }𝑖∈𝑉 contains the usual ’hat’ basis functions on
our mesh, that is, the family of functions on the surface mesh that
are linear inside triangles and satisfy 𝜑𝑖 (𝑥 𝑗 ) = 𝛿𝑖 𝑗 ,∀𝑖, 𝑗 ∈𝑉 . We also
use the space of functions that are constant per triangle

F𝑇 :=
{∑︁
𝜏∈𝑇

𝑓𝜏 1𝜏
�� 𝑓𝜏 ∈ R

}
, (24)

so that the gradient operator on F𝑉 is expressed as:

∇𝑉→𝑇 :
{ F𝑉 −→ F 3

𝑇∑
𝑖 𝑓𝑖 𝜑𝑖 ↦−→ ∑

𝜏∈𝑇
( ∑

𝑖∈𝑉 𝑓𝑖∇𝜑𝑖 (𝑐𝜏 )
)
1𝜏

(25)

where 𝑐𝜏 is the barycenter of triangle 𝜏 . Now, because we have
an operator ∇𝑉→𝑇 : F𝑉 → F𝑇 between two Euclidean spaces
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(using the scalar product induced by 𝐿2), the adjoint of the gra-
dient operator provides us with a discrete divergence operator
div𝑇→𝑉 = −

(
∇𝑉→𝑇

)∗. More precisely:

div𝑇→𝑉 :
{ F 3

𝑇
−→ F𝑉∑

𝜏 𝑣𝜏 1𝜏 ↦−→ −∑
𝑖∈𝑉

(
M−1𝐷𝑣

)
𝑖
𝜑𝑖

(26)

with the linear operator 𝐷 : F 3
𝑇
→R |𝑉 | defined such that (𝐷𝑣)𝑖 =∑

𝜏∈𝑇 |𝜏 |∇𝜑𝜏𝑖 · 𝑣𝜏 (with |𝜏 | being the area of the triangle 𝜏), and M
being the |𝑉 | × |𝑉 | “mass ” matrix with coefficients𝑀𝑖 𝑗 =

∫
𝜑𝑖𝜑 𝑗𝑑𝐴.

For any smooth function 𝑓 on a smooth surface X, note that one
can always write ∇X 𝑓 = divX

(
𝑓 I3

)
. Mimicking this identity, we

define another gradient operator on triangulated surfaces as:

∇𝑇→𝑉 :
���� F𝑇 −→ F 3

𝑉

𝑓 ↦−→ div𝑇→𝑉
(
𝑓 I3

) (27)

(Here divX and div𝑇→𝑉 are to be understood as column-wise opera-
tors when applied to matrix fields on smooth vs. discrete surfaces.)
Those operators make us able to define a discrete version of the
energy (22): for functions 𝜑 ∈F𝑉 and ℎ ∈F𝑇 , we simply define
𝑒 (𝜑,ℎ) :=



∇𝑇→𝑉 (∇𝑉→𝑇𝜑 +ℎ𝒏)


2
F𝑉

+


(∇𝑉→𝑇𝜑 +ℎ𝒏

)
·𝒏


2
F𝑇

(28)
where ∇𝑇→𝑉 is applied coordinate by coordinate.

F Other Relevant Details

We finally review a few more technical explanations that the main
text omits for conciseness. Fig. 1 also provides a visualization of
texture transfer from the example used in the main text.

F.1 Our LDDMM implementation from Fig. 5

At the core of the LDDMM (Large Deformation Diffeomorphic Met-
ric Mapping) framework lies a deformation model based on the flow
𝜙𝑣 : R𝑑 → R𝑑 of vector fields 𝑣 : [0, 1] ×R𝑑 → R𝑑 in the ambient
space R𝑑 (typically, 𝑑=2 or 3). In our case, a deformation 𝜙𝑣 is ap-
plied to a source mesh 𝑆 , producing the mesh 𝑆𝜙𝑣 by simply moving
every vertex 𝑥𝑖 of 𝑆 to the position 𝜙𝑣 (𝑥𝑖 ). Furthermore, the vector
fields that we consider are of the form:

𝑣 (𝑥) =
∑︁
𝑖

𝐾𝜎 (𝑥, 𝑐𝑖 ) 𝑝𝑖 , (29)

with 𝑝𝑖 ∈R2,𝐾𝜎 (𝑥,𝑦)=exp
(
−|𝑥 − 𝑦 |2/(2𝜎2)

)
, and the 𝑐𝑖 ’s are points

in R2 on a grid around both the source and target meshes 𝑆 and 𝑇 .
In our LDDMM example from Fig. 5, we use a typical regularization
cost for the deformation induced by vector fields 𝑣 of the form given
in Eq. (29) that is expressed as:

Reg(𝑣) :=
∑︁
𝑖 𝑗

𝐾𝜎 (𝑐𝑖 , 𝑐 𝑗 ) 𝑝𝑖 · 𝑝 𝑗 . (30)

For the data attachment term between the deformed source mesh
𝑆𝜙

𝑣 and the target mesh 𝑇 (with vertices (𝑦 𝑗 ) 𝑗 ∈ R2), we use:

data(𝑆𝜙𝑣 ,𝑇 ) = 𝑊 2
𝜖

(∑︁
𝑖

𝜇𝑖𝛿𝜙𝑣 (𝑥𝑖 ) ,
∑︁
𝑗

𝜈 𝑗𝛿𝑦 𝑗

)
, (31)

where 𝜇𝑖 ’s and 𝜈 𝑗 ’s are the weights associated to the meshes 𝑆𝜙𝑣 and
𝑇 respectively according to Eq. (18), as well as a squared distance
term on the corresponding landmarks land(𝜙𝑣) :=

∑3
𝑘=1 |𝜙𝑣 (𝑥𝑙𝑘 ) −

𝑦𝑙
𝑘
|2 (where {𝑥𝑙

𝑘
}𝑘 and {𝑦𝑙

𝑘
}𝑘 denote the respective landmark po-

sitions on the source and target meshes in R2). The resulting de-
formation 𝜙𝑣 is computed by minimizing the total energy Reg(𝑣)+

Fig. 2. Failure case of the purely convex formulation. An optimal mean
map (blue) between a source (red) and target (green) poses of a horse
uing landmark-based distances can fail when computed with our purely
convex Hessian-regularized formulation: the front legs, and partially the
tail, collapse on themselves because of variance loss.

Fig. 3. Another failure case of the purely convex formulation. The
optimal forward mean map (blue) between a source (red) and target (green)
poses of a human using Euclidean distance as the transport cost is overall
ok, but small details, like the fingers or the tip of the right shoulder are not
well recovered (see circled zoomed-in views).

𝛼 data
(
𝑆𝜙

𝑣
,𝑇

)
+ 𝛽 land(𝜙𝑣). We tried various combinations of pa-

rameters 𝜎, 𝛼, 𝛽 > 0 and grid size for the {𝑐𝑖 }𝑖 , and we used the best
looking result in the figure.

F.2 Examples of failure with the convex formulation

Our convex spatially regularized OT method (without Mongifica-
tion) works well when the cost function 𝑐 (., .) (in Eq. (6) of the main
text) already provides a good hint for which points of the source and
target measures should be matched. For instance, a Euclidean cost
works well if the source and target shapes are in similar poses, like
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Table 1. Size and timings of our tests: besides the number of vertices in
the source and target meshes, we indicate if Mongification was used, the
total number of Sinkhorn calls used, and the total computational time.

Fig. #vert. source #vert. target Mong. # Sink. Time
1 & 13 2487 2464 No 3 5”
4 & 11 1502 2502 No 3 6”

5 561 845 No 50 4”
6 & 7 5901 6332 Yes 20 1’57”
8 3087 4466 Yes 20 1’01”

9 & 10 6198 6021 Yes 20 1’55”
12 5070 4934 Yes 30 1’43”
14 2930 5258 Yes 40 59”

in Fig 1 or 4 of the main text. In some cases though, it is hard to find
such a good cost function, and even the use of cost functions based
on landmarks may have trouble distinguishing different points of
each shape if there are not enough landmarks: if this happens for
large enough regions, then even regularization is often not enough
to prevent the mean map from “collapsing”. This phenomenon is
illustrated in Fig. 2 where we used a landark-based transport cost
function from Eq. (10) with 7 landmarks: two of the legs of the horse
end up shrinking in diameter. Fig. 3 in the main text shows that
Mongification fixes this issue, even if only three landmarks are used.
Even when the Euclidean cost function is seemingly well suited
to match a pair of surfaces, like in Fig.3 where the poses are not
vastly different, using the purely convex method provides a good
registration for most of the shape, but some details are off: the mean
map is not guaranteed to land on the target surface, in fact, failing
for the parts with more detailed structure (like the fingers of both
hands) without Mongification.

F.3 Computational times

For the numerical examples in the main paper (identified with their
respective figure number), Tab. 1 specifies the size of each source
and target mesh through their numbers of vertices, whether Mongi-
fication was used or not, the total number of calls to Sinkhorn’s
algorithm before convergence, and the computational (wall clock)
time. Results, taking from seconds up to two minutes, were com-
puted on an Intel Xeon based computer with 64 GB RAM, equipped
with an Nvidia RTX 6000 GPU card with 48 GB VRAM.
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