Addendum to Blue Noise through Optimal Transport

Fernando de Goes Caltech Katherine Breeden Stanford Victor Ostromoukhov Lyon 1 U./CNRS Mathieu Desbrun Caltech

ACM Transactions on Graphics, 31(6) (SIGGRAPH Asia)

In this addendum, we provide lengthier derivations of the closed-form expressions presented in the main text, and present additional blue noise results and comparisons to previous techniques.

1 Functional and its Derivatives

Notation: A power diagram for a weighted point set $(\mathbf{X} = \{\mathbf{x}_i\}, W = \{w_i\})$ is a partition of a domain \mathcal{D} into convex cells \mathcal{V}_i^w such that $\mathcal{V}_i^w = \{\mathbf{x} \in \mathcal{D} \mid \|\mathbf{x} - \mathbf{x}_i\|^2 - w_i \leq \|\mathbf{x} - \mathbf{x}_j\|^2 - w_j, \forall j\}$. The dual of power diagram defines the regular triangulation of (\mathbf{X}, W) . We denote by \mathbf{e}_{ij} the regular edge between two adjacent points \mathbf{x}_i and \mathbf{x}_j , and by \mathbf{e}_{ij}^* the dual (orthogonal and clipped by \mathcal{D}) edge separating the partition regions \mathcal{V}_i^w and \mathcal{V}_j^w ; therefore $\mathbf{x} \in \mathbf{e}_{ij}^*$ iff $\|\mathbf{x} - \mathbf{x}_i\|^2 - w_i = \|\mathbf{x} - \mathbf{x}_j\|^2 - w_j$ and $\mathbf{x} \in \mathcal{D}$. We further indicate by $|\mathbf{e}|$ the length of the edge \mathbf{e} and by Ω_i the one-ring of \mathbf{x}_i in the regular triangulation (\mathbf{X}, W) . We also denote by \mathbf{c}_{ij} the intersecting point between the supporting lines of \mathbf{e}_{ij} and \mathbf{e}_{ij}^* . As in our main paper, we will refer to the density field in the domain \mathcal{D} as ρ , and denote the average value of ρ over \mathbf{e}_{ij}^* as $\bar{\rho}_{ij}$, and m_i as the integrated value of ρ over \mathcal{V}_i^w .

Identities: A few identities involving \mathbf{c}_{ij} , directly derived from [Mullen et al. 2011], are important in the rest of this addendum (the \perp symbol refers to counter-clockwise rotation by 90°):

$$\begin{cases} |\mathbf{e}_{ij}| = d_{ij} + d_{ji} \\ d_{ij} = \frac{|\mathbf{e}_{ij}|^2 + w_i - w_j}{2|\mathbf{e}_{ij}|} \\ d_{ji} = \frac{|\mathbf{e}_{ij}|^2 + w_j - w_i}{2|\mathbf{e}_{ij}|} \end{cases} \begin{cases} \mathbf{c}_{ij} = \mathbf{x}_i + \frac{d_{ij}}{|\mathbf{e}_{ij}|} (\mathbf{x}_j - \mathbf{x}_i) \\ \nabla_{w_i} \mathbf{c}_{ij} \cdot \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{e}_{ij}|} = \frac{1}{2|\mathbf{e}_{ij}|} \\ \nabla_{\mathbf{x}_i} \mathbf{c}_{ij} \cdot \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{e}_{ij}|} = \frac{d_{ij}}{|\mathbf{e}_{ij}|} \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{e}_{ij}|} \end{cases} \end{cases} \begin{cases} \forall \mathbf{x} \in \mathbf{e}_{ij}^*, \ \exists \ t \in \mathbb{R} \text{ s.t.} : \\ \mathbf{x} = \mathbf{c}_{ij} + t (\mathbf{x}_j - \mathbf{x}_i)^{\perp} \\ \nabla_{w_i} \mathbf{x} \cdot \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{e}_{ij}|} = \nabla_{w_i} \mathbf{c}_{ij} \cdot \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{e}_{ij}|} \end{cases}$$

Reynolds' transport theorem: The derivations we present below can be found through Reynolds theorem, which states that the rate of change of the integral of a scalar function f within a volume V is equal to the volume integral of the change of f, plus the boundary integral of the rate at which f flows through the boundary ∂V of outward unit normal \mathbf{n} ; i.e., in terse notation:

$$\nabla \left(\int_{V} f(\mathbf{x}) \ dV \right) = \int_{V} \nabla f(\mathbf{x}) \ dV + \int_{\partial V} f(\mathbf{x}) \ (\nabla \mathbf{x} \cdot \mathbf{n}) \ dA.$$

Derivative of m_i : For a fixed domain \mathcal{D} , we know that the partition of ρ into cells \mathcal{V}_i^w sums up to a constant, i.e., $\sum_i m_i = \text{constant}$. Consequently:

$$\left\{ \begin{array}{l} \nabla_{w_i} m_i + \sum_{j \in \Omega_i} \nabla_{w_i} m_j = 0 \\ \\ \nabla_{\mathbf{x}_i} m_i + \sum_{j \in \Omega_i} \nabla_{\mathbf{x}_i} m_j = 0 \end{array} \right.$$

We now apply Reynolds theorem to show that the derivative of m_j with respect to w_i is:

$$\nabla_{w_i} m_j = -\frac{\bar{\rho}_{ij}}{2} \frac{|\mathbf{e}_{ij}^*|}{|\mathbf{e}_{ij}|}$$

$$\nabla_{w_i} m_j = \int_{\mathcal{V}_j^w} \underbrace{\nabla_{w_i} \rho(\mathbf{x}) d\mathbf{x}}_{=0} + \sum_{k \in \Omega_j} \int_{\mathbf{e}_{jk}^*} \rho(\mathbf{x}) \underbrace{\left(\nabla_{w_i} \mathbf{x} \cdot \frac{\mathbf{x}_k - \mathbf{x}_j}{|\mathbf{e}_{jk}|}\right)}_{=\nabla_{w_i} \mathbf{c}_{jk} \cdot \frac{\mathbf{x}_k - \mathbf{x}_j}{|\mathbf{e}_{jk}|}, \forall \mathbf{x} \in \mathbf{e}_{jk}^*} d\mathbf{x}$$

$$= \int_{\mathbf{e}_{ij}^*} \rho(\mathbf{x}) \left(\nabla_{w_i} \mathbf{c}_{ij} \cdot \frac{\mathbf{x}_i - \mathbf{x}_j}{|\mathbf{e}_{ij}|}\right) d\mathbf{x}$$

$$= \int_{\mathbf{e}_{ij}^*} \rho(\mathbf{x}) \frac{-1}{2|\mathbf{e}_{ij}|} d\mathbf{x} = -\frac{\bar{\rho}_{ij}}{2} \frac{|\mathbf{e}_{ij}^*|}{|\mathbf{e}_{ij}|}$$

Optimal transport: We now define the optimal L_2 transport cost between a point \mathbf{x}_i and its dual cell \mathcal{V}_i^w :

$$\mathcal{E}_i(\mathbf{X}, W) = \int_{\mathcal{V}_i^w} \rho(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_i\|^2 d\mathbf{x}.$$

The total cost to transport ρ to the points **X** is then defined simply as $\mathcal{E}(\mathbf{X}, W) = \sum_{i} \mathcal{E}_{i}(\mathbf{X}, W)$.

A direct application of Reynolds theorem leads to the derivatives of \mathcal{E} :

$$\nabla_{w_i} \mathcal{E}(\mathbf{X}, W) = \sum_{j \in \Omega_i} (w_j - w_i) \nabla_{w_i} m_j$$
$$\nabla_{\mathbf{x}_i} \mathcal{E}(\mathbf{X}, W) = 2m_i (\mathbf{x}_i - \mathbf{b}_i) + \sum_{j \in \Omega_i} (w_j - w_i) \nabla_{\mathbf{x}_i} m_j$$

where

$$\mathbf{b}_i = \frac{1}{m_i} \int\limits_{\mathcal{V}_i^w} \mathbf{x} \rho(\mathbf{x}) d\mathbf{x}.$$

Proof. First let's derive the expression for $\nabla_{\mathbf{x}_i} \mathcal{E}$.

$$\begin{split} \nabla_{\mathbf{x}_{i}}\mathcal{E}(\mathbf{X},W) &= \int\limits_{\mathcal{V}_{i}^{w}} \nabla_{\mathbf{x}_{i}} \left(\rho(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_{i}\|^{2} \right) d\mathbf{x} + \sum\limits_{j \in \left(\left\{ i \right\} \cup \Omega_{i} \right)} \int\limits_{\partial \mathcal{V}_{j}^{w}} \rho(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_{j}\|^{2} \left(\nabla_{\mathbf{x}_{i}} \mathbf{x} \cdot \mathbf{n} \right) d\mathbf{x} \\ &= 2m_{i}(\mathbf{x}_{i} - \mathbf{b}_{i}) + \sum\limits_{j \in \Omega_{i}} \int\limits_{\mathbf{e}_{ij}^{*}} \rho(\mathbf{x}) \underbrace{\left(\|\mathbf{x} - \mathbf{x}_{j}\|^{2} - \|\mathbf{x} - \mathbf{x}_{i}\|^{2} \right)}_{= w_{j} - w_{i}, \, \forall \, \mathbf{x} \in \mathbf{e}_{ij}^{*}} \left(\nabla_{\mathbf{x}_{i}} \mathbf{c}_{ij} \cdot \frac{\mathbf{x}_{i} - \mathbf{x}_{j}}{|\mathbf{e}_{ij}|} \right) d\mathbf{x} \\ &= 2m_{i}(\mathbf{x}_{i} - \mathbf{b}_{i}) + \sum\limits_{j \in \Omega_{i}} \left(w_{j} - w_{i} \right) \underbrace{\left(\frac{d_{ij}}{|\mathbf{e}_{ij}|^{2}} (\mathbf{x}_{i} - \mathbf{x}_{j}) \int\limits_{\mathbf{e}_{ij}^{*}} \rho(\mathbf{x}) d\mathbf{x} \right)}_{\mathbf{e}_{ij}^{*}} \\ &= 2m_{i}(\mathbf{x}_{i} - \mathbf{b}_{i}) + \sum\limits_{j \in \Omega_{i}} \left(w_{j} - w_{i} \right) \nabla_{\mathbf{x}_{i}} m_{j}. \end{split}$$

The proof for $\nabla_{w_i} \mathcal{E}$ is similar, with the exception that the first term of Reynolds theorem is zero.

Functional \mathcal{F} : In our work we use the extremization of a functional \mathcal{F} which is defined as:

$$\mathcal{F}(\mathbf{X}, W) = \mathcal{E}(\mathbf{X}, W) - \sum_{i} w_{i} (m_{i} - m).$$

By combining the expressions shown so far, we can easily compute the derivatives of \mathcal{F} :

$$\nabla_{w_i} \mathcal{F}(\mathbf{X}, W) = m - m_i$$

$$\nabla_{\mathbf{x}_i} \mathcal{F}(\mathbf{X}, W) = 2m_i(\mathbf{x}_i - \mathbf{b}_i)$$

$$\nabla_w^2 \mathcal{F}(\mathbf{X}, W) = -\Delta^{w, \rho}$$

Proof. Based on the expressions derived previously, let's start proving the first-order derivatives:

$$\begin{cases}
\nabla_{w_i} \mathcal{F}(\mathbf{X}, W) = \nabla_{w_i} \mathcal{E}(\mathbf{X}, W) - (m_i - m) - \sum_{j \in \Omega_i} (w_j - w_i) \nabla_{w_i} m_j = m - m_i. \\
\nabla_{\mathbf{x}_i} \mathcal{F}(\mathbf{X}, W) = \nabla_{\mathbf{x}_i} \mathcal{E}(\mathbf{X}, W) - \sum_{j \in \Omega_i} (w_j - w_i) \nabla_{\mathbf{x}_i} m_j = 2m_i (\mathbf{x}_i - \mathbf{b}_i)
\end{cases}$$

The second-order derivative with respect to weights is trivial since we know $\nabla_{w_i} m_i$ and $\nabla_{w_i} m_j$.

Equivalence of Optimizations: We now review the constrained minimization problem presented in the main text and prove more thoroughly the equivalence of solutions to the extremization of our functional \mathcal{F} and the extremization of the Lagrangian \mathcal{L} .

First we define our constrained minimization problem as:

$$\min \mathcal{E}(\mathbf{X}, W)$$
 s.t. $m_i = m \quad \forall i$.

With Lagrangian multipliers $\Lambda = \{\lambda_i\}$ we can solve such problem by extremizing the Lagrangian:

$$\mathcal{L}(\mathbf{X}, W, \Lambda) = \mathcal{E}(\mathbf{X}, W) + \sum_{i} \lambda_{i}(m_{i} - m).$$

Therefore, for any extremum $(\mathbf{X}^*, W^*, \Lambda^*)$ of \mathcal{L} the following conditions hold:

$$\begin{cases} 0 = \nabla_{w_i} \mathcal{L}(\mathbf{X}^*, W^*, \Lambda^*) = \nabla_{w_i} \mathcal{E}(\mathbf{X}^*, W^*) + \sum_{j \in \Omega_i} (\lambda_j^* - \lambda_i^*) \nabla_{w_i} m_j \\ 0 = \nabla_{\mathbf{x}_i} \mathcal{L}(\mathbf{X}^*, W^*, \Lambda^*) = \nabla_{\mathbf{x}_i} \mathcal{E}(\mathbf{X}^*, W^*) + \sum_{j \in \Omega_i} (\lambda_j^* - \lambda_i^*) \nabla_{\mathbf{x}_i} m_j \\ 0 = \nabla_{\lambda_i} \mathcal{L}(\mathbf{X}^*, W^*, \Lambda^*) = m_i - m \end{cases}$$

Note that the first condition reduces simply to $\Delta^{w,\,\rho}(\Lambda^*+W^*)=0$, and thus $\Lambda^*={\rm constant}-W^*$. By replacing the Lagrangian multipliers Λ^* with the negated weights W^* , we conclude that $\nabla_{{\bf x}_i}\mathcal{L}({\bf X}^*,W^*,\Lambda^*)=2m_i({\bf x}_i^*-{\bf b}_i)=0$. Hence, any extremum of $\mathcal L$ is also an extremum of $\mathcal F$ and vice-versa.

2 More Results

The following images are additional results of our algorithm, obtained automatically without parameter tuning. First, we show in Fig. 1 blue noise point sets before and after our regularity breaking procedure (from Fig. 5 in our paper), with a color for each point indicating the weight values optimized. Fig. 2 then shows the blue noise point distribution of an image generated by our method compared to the recent approach of [Chen et al. 2012]. We show two other stippling examples, in Fig. 3 and Fig. 4. We also present additional comparisons of our method vs. the results of [Schlömer et al. 2011], complementing Fig. 8 of the main text. Finally, we provide large images for the zoneplate tests. Note the presence of second noisy rings in the results obtained by previous methods, contrasting with the anti-aliased reconstruction achieved with our method.

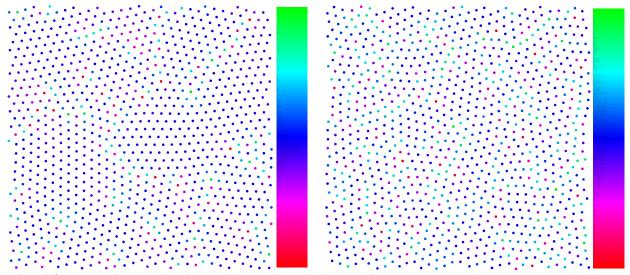


Figure 1: Weight Range: Blue noise distributions before and after breaking regularities on a constant density over a periodic domain (from Fig. 5 in the main paper). Colors of dots indicate weight values (with zero mean), ranging from -4% to 4.5% of the average squared edge length in the regular triangulation. The histogram of the weights is also shown on top of the color ramp.

References

BALZER, M., SCHLÖMER, T., AND DEUSSEN, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. *ACM Trans. Graph. (SIGGRAPH)* 28, 3, 86:1–8.

CHEN, Z., YUAN, Z., CHOI, Y.-K., LIU, L., AND WANG, W. 2012. Variational blue noise sampling. *IEEE Trans. Vis. Comput. Graphics* 18, 10, 1784–1796.

- Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi Tessellations: Applications and algorithms. SIAM Rev. 41 (Dec.), 637–676.
- FATTAL, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. (SIGGRAPH) 30, 3, 48:1–48:12.
- MULLEN, P., MEMARI, P., DE GOES, F., AND DESBRUN, M. 2011. HOT: Hodge Optimized Triangulations. *ACM Trans. Graph.* (SIGGRAPH) 30, 3.
- SCHLÖMER, T., HECK, D., AND DEUSSEN, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In *Symp. on High Performance Graphics*, 135–142.
- XU, Y., LIU, L., GOTSMAN, C., AND GORTLER, S. J. 2011. Capacity-constrained Delaunay triangulation for point distributions. *Comput. Graph. 35*, 510–516.

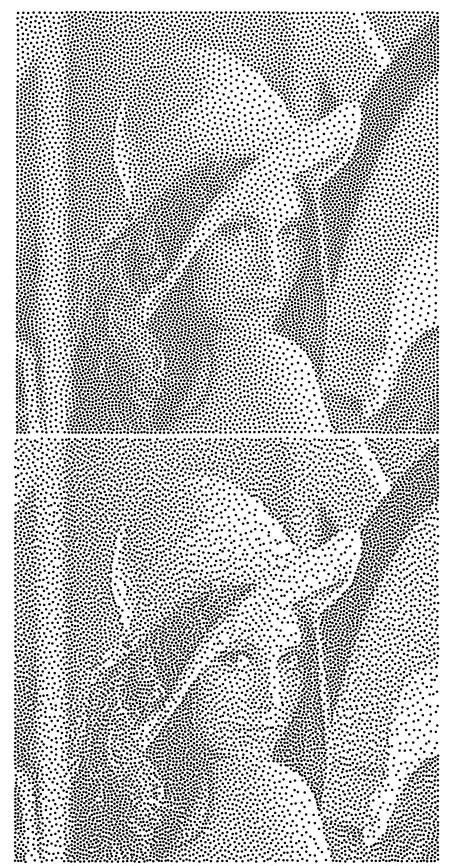


Figure 2: Lena: 10K sites; (top) result generated by our algorithm in 37 seconds (with an Intel Core i7 2.2 GHz laptop, 4GB RAM); (bottom) result of [Chen et al. 2012] (provided by the authors) in 22 seconds (with an Intel Xeon 3.16GHz quad-core, 8GB RAM).

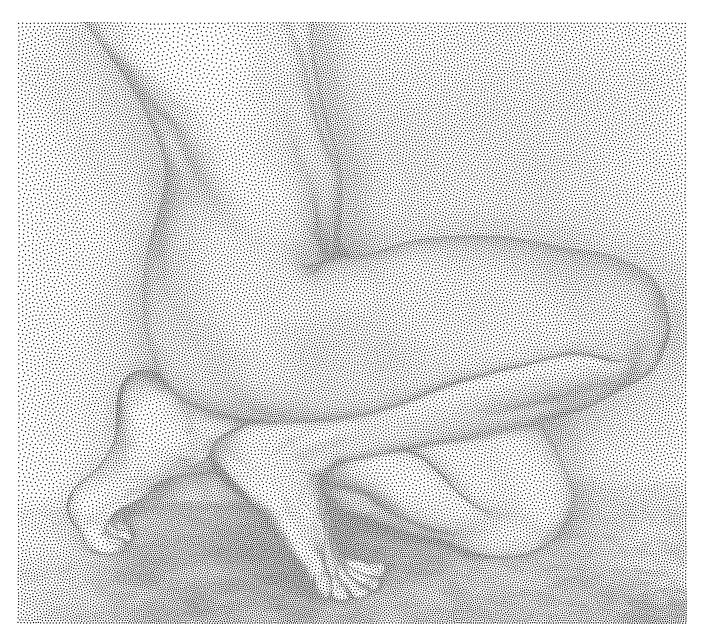


Figure 3: *Dancer:* 50K sites, 1181x1024 image, 3 mins. From a photograph by Edward Weston.

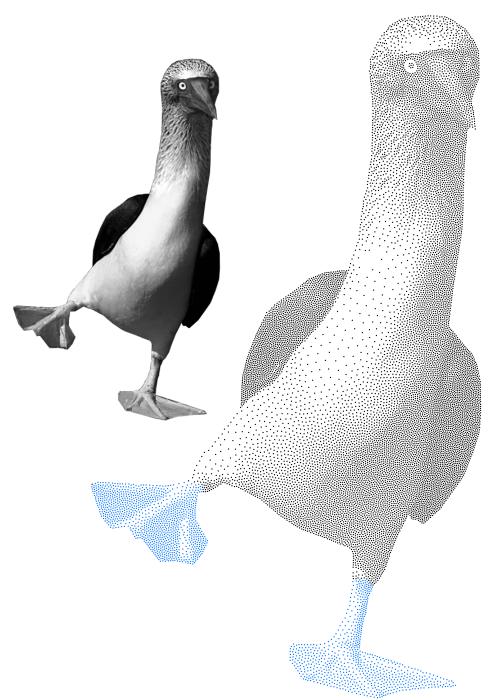


Figure 4: *Booby Bird.* A 376x651 image of a blue-footed booby bird (top left) is sampled with 15K points in 70 seconds with our approach. Note that we post-processed the points on its feet by turning them blue to honor its name.

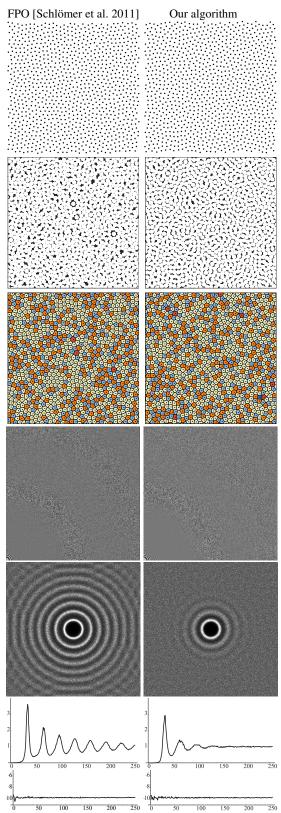


Figure 5: More Comparisons. Additional comparison of our results vs. the method of [Schlömer et al. 2011] for a constant density function over a periodic domain, complementing Fig. 8 of the main text.

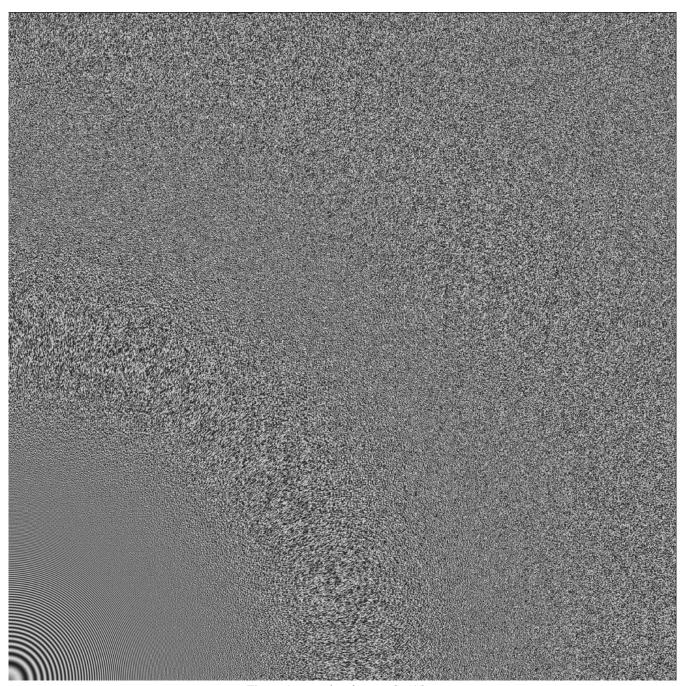


Figure 6: Zoneplate for our algorithm.

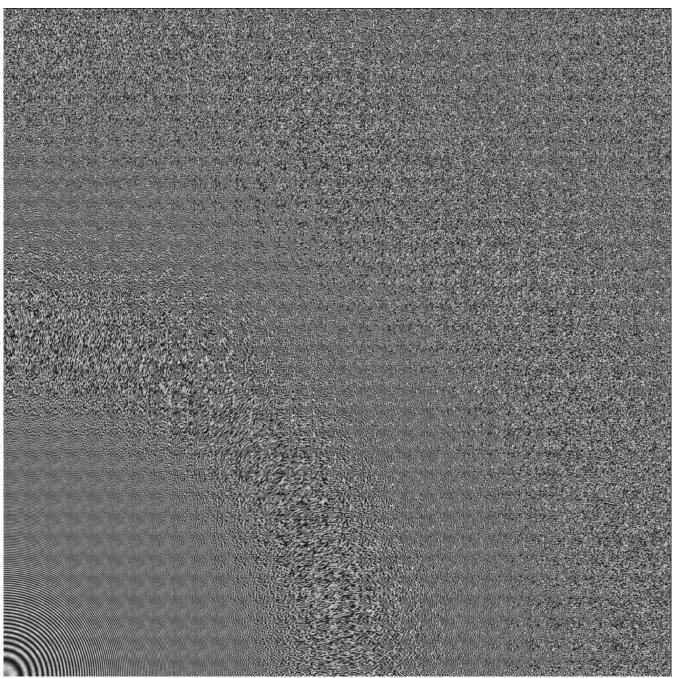


Figure 7: Zoneplate for CVT [Du et al. 1999]. Stopped at $\alpha=0.75$.

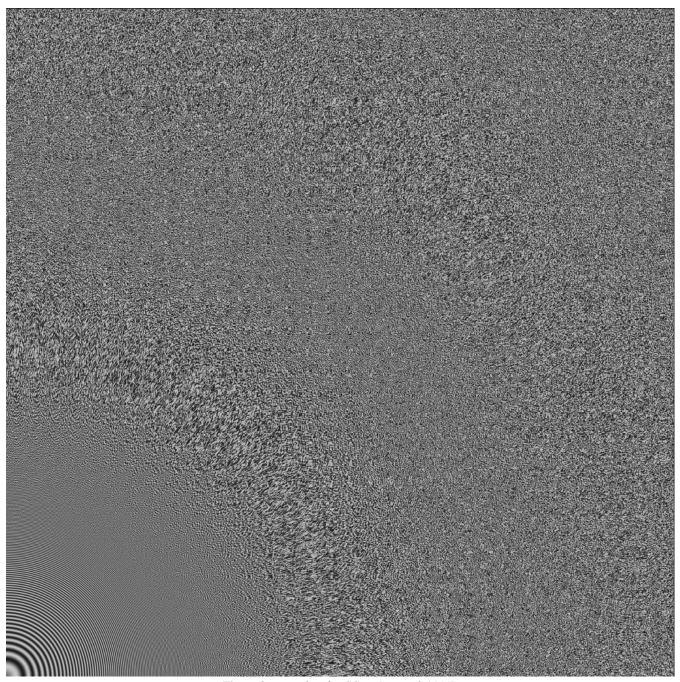


Figure 8: Zoneplate for CCDT [Xu et al. 2011].

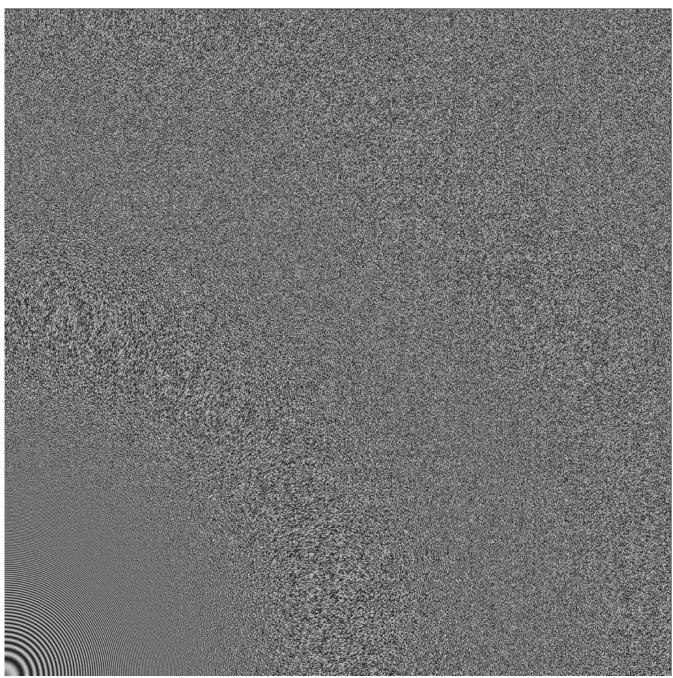


Figure 9: Zoneplate for CapCVT [Chen et al. 2012].

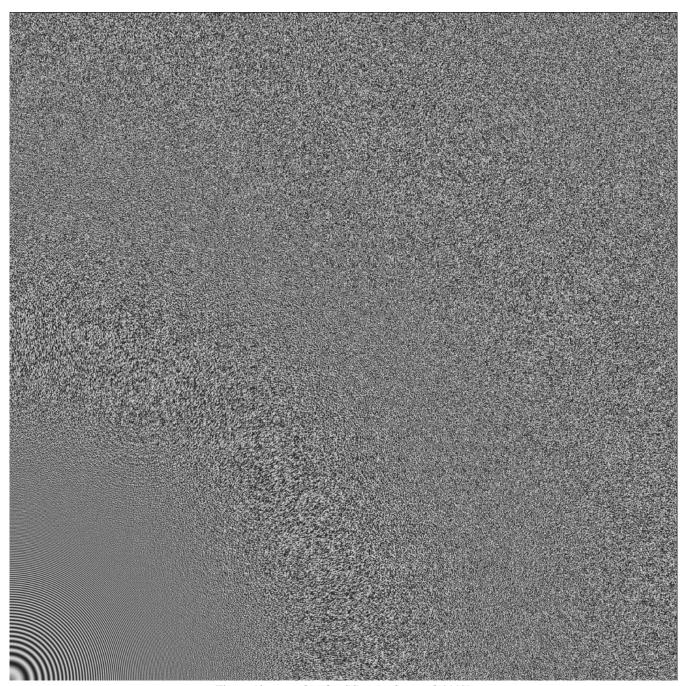


Figure 10: Zone plate for CCVT [Balzer et al. 2009].

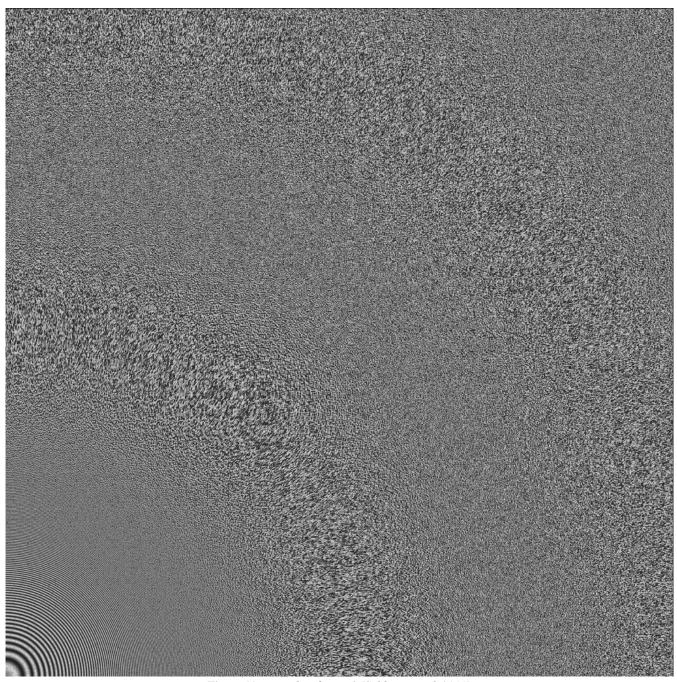


Figure 11: Zoneplate for FPO [Schlömer et al. 2011].

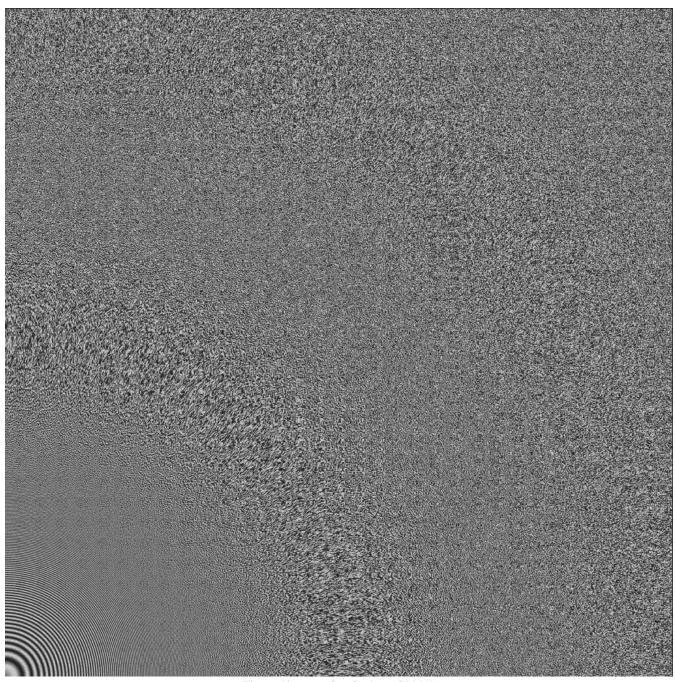


Figure 12: Zoneplate for [Fattal 2011].