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Abstract
Denoising is a common, yet critical operation in geometry processing aiming at recovering high-fidelity models of piecewise-
smooth objects from noise-corrupted pointsets. Despite a sizable literature on the topic, there is a dearth of approaches capable
of processing very noisy and outlier-ridden input pointsets for which no normal estimates and no assumptions on the underlying
geometric features or noise type are provided. In this paper, we propose a new robust-statistics approach to denoising pointsets
based on line processes to offer robustness to noise and outliers while preserving sharp features possibly present in the data.
While the use of robust statistics in denoising is hardly new, most approaches rely on prescribed filtering using data-independent
blending expressions based on the spatial and normal closeness of samples. Instead, our approach deduces a geometric de-
noising strategy through robust and regularized tangent plane fitting of the initial pointset, obtained numerically via alternating
minimizations for efficiency and reliability. Key to our variational approach is the use of line processes to identify inliers vs.
outliers, as well as the presence of sharp features. We demonstrate that our method can denoise sampled piecewise-smooth
surfaces for levels of noise and outliers at which previous works fall short.

CCS Concepts
• Computing methodologies → Point-based models;

1. Introduction

Digital scanning devices irremediably suffer from various sources
of noise and corrupted samples during 3D geometry acquisition,
even more so due to the rapid development of low-cost sensors such
as line of motion detectors and time of flight cameras. Yet, the need
for detailed geometric models is prevalent in a variety of applica-
tion domains, from archaeology, to retail, to biomedical fields. As
a consequence, “denoising” scanned geometric data has spurred a
wide range of research efforts that relied on tools from statistical
inference and/or differential geometry.

By now, a number of geometric denoising algorithms are able
to address specific cases particularly well. For instance, a sim-
ple implicit mean curvature flow [DMSB99] can easily and effi-
ciently handle a small amount of isotropic noise, but would fail
on anything more challenging. More generally, there exist many
numerical methods to extract quite reliably smooth models (i.e.,
organic shapes) or piecewise-flat models (e.g., mechanical parts)
from noise-laden data, even in the presence of (unstructured) out-
liers. In addition, prior knowledge on the scanning process may
help dissociate shape samples from corrupted samples; but while
one can identify inaccuracies for a specific sensor by learning its
systematic flaws on a few known models [WLT16], the increasing
number of 3D datasets constructed from multi-source data integra-
tion (including noise with different characteristics due to varying
lighting conditions or heterogeneity of sensor technology) renders

the task of geometry denoising far more difficult: no simple noise
model can be leveraged to infer the original geometry.

When neither a scanning noise model nor a prior on the type of
shapes being captured is available, discriminating geometric fea-
tures from noise to reconstruct piecewise-smooth surfaces becomes
exceedingly difficult: the low-pass filter nature of geometric de-
noising often smooths out sharp edges and corners, particularly if
the noise level is significant or if we are dealing with pointsets
where no connectivity and normal orientation is available. In this
very challenging case, most existing typical tools used to detect
noise or outliers simply fail to provide help. In this paper, we aim
at providing a novel approach to help remedy this situation.

1.1. Previous Work

Because geometry denoising is both a common and critical op-
eration in geometry processing aiming at recovering high-fidelity
models of objects from noise-corrupted data, the related literature
in this topic is sizable. We thus focus our review only on the most
salient and/or most relevant approaches, be them for meshes, or
more relevant to our case, for pointsets—the interested reader can
check more thorough reviews, e.g., [HJW∗17, ZSL∗22].

Filtering-based methods. Early methods for mesh denoising
relied on isotropic surface flows designed to remove high fre-
quencies [Tau95], such as the Laplace-Beltrami flow [DMSB99].
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Figure 1: Denoising through line processes. By globally optimizing a robust and regularized fitting energy using line processes associated
with local pairs of tangent planes, our method can robustly denoise raw point clouds (blue dots) while leaving features (if any are present)
well preserved (green). Denoised pointsets are then visualized via their interpolating reconstruction through advancing front [DCS22] to
offer a clearer visual evaluation of their (piecewise) smoothness.

This line of work was generalized to anisotropic flows and
signal-processing based filtering [CRT04, LP05], and extended to
pointsets [PG01, PKG02, LSK∗10, LEL14]. Most of these meth-
ods are, however, unable to detect or preserve sharp features dur-
ing denoising, which spurred the use of more sophisticated ap-
proaches such as bilateral filtering [JDD03, FDCO03, DDF17] or
median filtering [SB04] for instance: these iterative methods take
their own analytical choice of dependence on spatial closeness and
normal similarity between points or facets of the input to smooth ei-
ther the normal estimates [SRML07] (followed by vertex position
updating), the positions, or both [ZDZ∗15]. Spectral-based meth-
ods re-express filtering through an optimization problem based
on a hypergraph of the input data obtained via patch selection or
downsampling; denoising is then obtained via Laplacian regular-
ization [ALMF19,ZCD20]. The results of these optimization-based
approaches, however, depend heavily on the particular expression
of spatial and normal dependence for bilateral filtering or on the
patch selection for spectral methods, although they usually exceed
the quality of the original isotropic methods in terms of feature
preservation and robustness to noise — for a proper choice of user-
selected parameters. Moreover, many of these approaches only ap-
ply to input meshes or pointsets equipped with normals.

Optimization-based methods. Another approach to denoising
geometric samples of a surface is to formulate an optimization
problem to find a deformation that best fits the input data given pri-
ors on the underlying surface and noise. Typical priors on the final
surface include ℓ0 or ℓ1 minimization for CAD-like shapes [HS13],
while Gaussian or i.i.d. noise is often assumed [DTB06,WYL∗14].
Even if these approaches generate great results with little to no pa-
rameter tuning for input data containing specific geometric features
or noise patterns, they rarely generalize to more complex cases. Im-
provement can be achieved by leveraging non-local self-similarity
between patches, exploiting low-rank priors [CDY∗20, LSL∗22],
or learning a dictionary [DVC18], at the cost of added computa-
tional complexity and possible failures for pointsets lacking self-
similarity. Another form of optimization-based approach is the use
of moving least squares (MLS [Lev98, ABCO∗03]) which was ex-

tended to handle outliers and sharp features [FCOS05, OGG09,
XF21] through robust statistics. A similar line of research tries to
locally project the points on an underlying surface while enforc-
ing uniform distribution (LOP [LCOLTE07, HLZ∗09, LXJF13]),
this time without relying on tangent plane fitting. These methods,
like MLS-based techniques, tend to over-smooth the data when the
noise level is high because of their use of fixed and isotropic spatial
weighting functions, which can be partially remedied if the noise
happens to be a Gaussian mixture [LWC∗18].

Learning-based methods. Recent works have focused on learn-
ing how to denoise: from a training set containing known shapes
sampled by a specific scanning device, supervised approaches train
a single neural network layer [WLT16] or a deep network [BJH22]
to identify the typical sensor flaws so as to clean future scans. How-
ever, many of these methods require a complete remeshing or a vox-
elization of the input, which significantly reduces their usefulness
for pointset denoising. Based on PointNet or PCPNet, supervised
approaches specifically targeting pointsets [YLF∗18, RLBG∗20,
PFVM21, ZLQH21] do provide noticeably increased robustness to
strong noise levels and outliers. Unsupervised methods (which do
not need access to clean examples for training) have been proposed
too, mostly based on autoencoders. They either infer the displace-
ment of noisy points from the assumed surface [HRR19,CWS∗20]
or directly learn the underlying manifold [LH20]. While unsuper-
vised learning has not yet demonstrated robustness to noise, su-
pervised methods have exhibited some of the best results thus far.
But supervised learning methods typically suffer from performance
degradation when the input pointset deviates significantly from the
training data; in particular, features not included in the training set
cannot be recovered.

1.2. Contributions

Geometry denoising is a very mature field of research by now,
with a number of solutions as we just reviewed. Yet, when dealing
with very noisy and outlier-ridden input pointsets without given
normals, for which no assumptions on the underlying geometric
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features or noise type are known, there are currently very few
numerical approaches that one can turn to in order to clean it
up. Consolidating this type of geometry input is, however, neces-
sary for even the most basic processing: a simple Poisson recon-
struction on a raw pointset often fails because providing a con-
sistent normal orientation is notoriously difficult in the presence
of noise [MDGD∗10, WLL∗22]. We thus propose a new robust-
statistics approach to the denoising of challenging pointsets based
on a non-linear optimization of the tangent spaces. While the use of
robust statistics in denoising is hardly new (Yadav et al. [YSZP20]
even argued that most methods are based on some form of ro-
bust statistics), most approaches rely on prescribed filtering us-
ing closed-form blending expressions based on spatial and normal
closeness. Instead, we learn how to derive piecewise-smooth local
planar approximations through a non-linear optimization, handled
numerically via alternating minimizations for robustness and ef-
ficiency. Key to our variational approach will be the use of line
processes to detect, within the noise, outliers and sharp features.

2. Robust Statistics and Line Processes

Denoising geometry requires the identification of noise and out-
liers. Statistical inference can achieve this goal by relying on prior
assumptions on the data (randomness, independence, etc). These
assumptions are not meant to be precisely true, but just a conve-
nient rationalization of experience. One then hopes that a minor
error in the mathematical model should only result in a small er-
ror in the final inference. Unfortunately, this does not always hold,
and the concept of robust statistics becomes very relevant: as de-
scribed in [HRRS86], its main goals are “to describe the structure
best fitting the bulk of the data, and to identify the deviating data
points (outlier) for further treatment", with good performance for
data drawn from a wide range of probability distributions. Before
delving into our approach, we thus recall some key concepts of ro-
bust statistics [Hub81] upon which we will construct our approach.

2.1. M-estimators to generalize least-squares estimates

Suppose we are trying to reconstruct (in 1D for simplicity of ex-
planation) a signal f (u) from noisy samples yi = f (ui)+ ε, where
ui are the locations where the signal is sampled and ε reflects un-
certainty in measurement. From a parameterized set of functions
fp spanning a chosen functional space, the typical least-squares re-
construction fp∗ of the signal f is expressed as:

p∗ = argmin
p ∑

i
∥yi− fp(ui)∥2. (1)

If the noise ε turns out to be a zero-mean Gaussian random variable,
this least-squares fit is identical to the maximum likelihood estima-
tor (MLE). However, noise is rarely normally distributed due, in
part, to the unavoidable presence of outliers (i.e., samples that do
not follow the noise distribution assumption), and the least-squares
reconstruction can be massively affected in this case: outliers can
significantly influence the overall solution. In order to remediate
this sensitivity to outliers without degrading the quality of the fit,
M-estimators propose to recast the variational definition of the best
estimate by changing the ℓ2 norm of the residual by another norm,

called the ρ-function. M-estimators thus determine the optimal re-
construction fp∗

ρ
of the signal f in our example via:

p∗
ρ = argmin

p ∑
i

ρ(yi− fp(ui)). (2)

While the least-squares approach corresponding to ρ(x)=x2 is no-
toriously sensitive to outliers, one can design a ρ function more ro-
bust to the breaking of the assumptions about the underlying noise
distribution by noting that the derivative ρ

′, called the influence
function [HRRS86], characterizes the bias that a particular sample
has on the solution. A number of ρ-functions have been proposed,
varying from the truncated L1 norm to Tukey’s function [BT74],
for which the influence functions do not grow linearly as for the
least-squares approach (thus assigning high weights to far-away
samples), but instead offer an upper bound and localized support
for the influence of a sample on the solution, see Fig. 2. Using these
robust ρ-functions drastically improves the resilience of surface de-
noising to arbitrary noise; but it also requires non-linear minimiza-
tions to solve for the optimal fitting parameters, far more complex
to solve than the least-squares approach. Yadav et al. [YRS∗18] ar-
gue that most state-of-the-art methods for iterative normal filtering
(from bilateral filtering to moving least-squares) can be interpreted
as estimates of a denoised normal field based on the product of two
robust ρ-functions – one based on positions, one based on normals
– for various choices of ρ-functions. While such a robust-statistics
denoising can handle higher amounts of noise and outliers, the lo-
cal estimate of a normal is based on a hard-coded choice of spatial
weighting and normal weighting of the neighboring samples, rather
than a variational approach which best robust-fits the input while
enforcing (piecewise) smoothness as a prior.
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Figure 2: ρ-function: The dependence of the least-squares esti-
mator (dashed blue) on the error value of a sample is quadratic
(left), leading to an unbounded influence (right) of outliers. In con-
trast, M-estimators such as the one proposed in Geman and Mc-
Clure [GM87] (solid green) follow a quadratic profile for small
error values, but rapidly cut off the influence of outliers, bringing
robustness to the M-estimate.

2.2. Line processes to handle discontinuities

Another powerful tool in robust statistics framework is known as
“line processes”. Initially proposed by Geman and Geman [GG84]
in the context of Markov random fields to handle discontinuities
via penalty terms, line processes have been popular for segmen-
tation, image reconstruction and optical flow in computer vision.
The idea is to favor spatial smoothness as long as neighboring sam-
ples are similar enough, and to acknowledge the presence of a dis-
continuity otherwise. Obviously, the notion of local similarity is
very much similar to the notion of inliers vs. outliers, when the
prior is smoothness. In fact, line processes are directly related to ρ-
functions — although this was realized a posteriori [BR96]. Indeed,
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one can regard the penalty term Ψ(·) of a line process as related to
a ρ-function if the following property holds:

ρ(x) = inf
0≤z≤1

zx2 +Ψ(z), (3)

where z is the line process taking values between 0 and 1. When
the minimum is reached for z close to 1, the line process identi-
fies the data sample as an inlier, for which the typical least-squares
weighting (x2) is ideal. Inversely, when z is close to 0, the typical
quadratic weighting is significantly dampened, identifying a data
sample as an outlier to reject or indicating the presence of a dis-
continuity. In between, the weighting corresponds to an actual ρ-
function reflected by the equality in Eq. (3). As a relevant example
to illustrate this property, consider the Geman and McClure’s ro-
bust function [GM87] (see Fig. 2) and its associated line process
penalty with selectivity µ, expressed respectively as:

ρµ(x) =
x2

1+ x2/µ
, Ψµ(z) = µ(

√
z−1)2. (4)

Indeed, the necessary condition for minimization in z reads:

0 =
∂

∂z

[
zx2 +Ψµ(z)

]
= x2 +Ψ

′
µ(z) = x2 +µ

(
1− 1√

z

)
.

So the minimum is reached for zmin=(1+ x2

µ )
−2 ∈ [0,1], for which

x2 zmin +Ψµ(zmin) =
x2

(1+ x2

µ )
2
+µ

(
1

1+ x2

µ

−1
)2

=
x2 +µ x4

µ(
1+ x2

µ

)2 =
x2

1+ x2

µ

= ρµ(x).

as expected. In other words, the use of a robust-statistics ρ-function
to generalize least-squares estimates can be replaced by extra vari-
ables zi to modulate the quadratic “least-squares” weighting of the
various samples, and Ψµ can be understood of as a penalty for in-
troducing a discontinuity with selectivity µ. While Eq. (3) proves
that robust functions and line processes are equivalent, the latter
brings a few significant advantages. First, they offer a straightfor-
ward approach to minimizing energies of the same type as Eq. (2)
through alternating optimization of simpler problems (similar to
Expectation Maximization). Instead of invoking an involved non-
linear solver, one can jointly optimize over x and the zi by alter-
nating restricted minimizations over each individual variable while
the others are considered fixed: fixing x leads to a closed-form ex-
pression of the optimal zmin

i , while fixing all the zi only requires a
linear solve for x, amounting to a weighted least-squares solution.
Line processes also have the advantage of making explicit which
samples are identified to be inliers or outliers — or somewhere in
between, as a line process can have any value between 0 and 1. In
the context of piecewise smoothness, these line processes can be
further leveraged by adding objective functions dependent on the
line processes to enforce prior assumptions about the spatial orga-
nization of discontinuities, such as straightness or prescribed orien-
tation [BR96]. Finally, since line-process penalty functions are typ-
ically convex, one can play with their selectivity µ to devise a con-
tinuation method called Graduated Non-Convexity (GNC [BZ03])
in which the continuation parameter µ can be adjusted to construct a
convex approximation to the original objective function, before de-
creasing it to offer an efficient non-linear minimization: the initial

input bilateral ours

Figure 3: When normals are missing: Approaches such as bi-
lateral filtering require normal estimates along with the input
pointset; deducing normals from a local neighborhood PCA or
more advanced normal estimators [CCC∗08] results in bumpy sur-
faces (left), while our variational approach manages to denoise
the input reliably without normal guesses (right). The scanned Ar-
madillo model is from [HWG∗13].

approximation will assume only inliers, then outliers will begin to
appear (and possibly interact) as minimization goes on, preventing
the minimization to get trapped too early in a local minimum.

2.3. Discussion

Robust statistics have been highly successful in computer vision
by offering tools for the detection of inliers vs. outliers, and simi-
larly, of local smoothness vs. discontinuity. Surprisingly, line pro-
cesses have not, to our knowledge, been exploited for geometric
denoising. As we have seen earlier in Sec. 1.1, this is not to say that
robust statistics has not, itself, been leveraged: most bilateral fil-
tering and MLS techniques make heavy use of ρ-functions to offer
robustness to spurious data [YSZP20]. While this is often satisfac-
tory for noisy input meshes (where normals are already quite reli-
able), this strategy too often fails on raw pointsets where normals
are not initially known due to the difficulty of finding a globally
consistent normal orientation and the fact that initially-inaccurate
normals can be falsely detected as features. In our context of de-
noising raw pointsets, we do not only need to identify outliers, i.e.,
point samples erroneously located, to prevent them from affecting
the probable shape, but sharp geometric features should also be
clearly identified and cleaned up to offer accurate reconstruction.
Line processes are precisely “exposing” these spatial and normal
outliers instead of leaving them implicit in the use of M-estimators
— a bit like exposing a transport plan instead of a mere optimal
transport cost provides more handles than the cost alone [PCS21].

In the rest of this paper, we present our approach to geometric de-
noising through robust and regularized fitting of the initial pointset.
In order to best adapt previous works in vision to our 3D context,
we change the typical two-term objective function accounting for
both data fitting and smoothness by working on the normal field
instead: we find local tangent planes that faithfully robust-fit the
data while ensuring piecewise-smoothness of the resulting set of
all tangent planes, where line processes are used both for robust
fitting of the data and for piecewise-smoothness enforcement in
order not to smooth sharp features. While previous robust meth-
ods for geometric denoising could reasonably well be explained as
a form of tangent fitting as well (although not necessarily a vari-
ational one), none favors piecewise-smoothness through a robust
Dirichlet energy: local smoothness is typically reached through re-
peated averages instead of through a global competition between
data fitting and smoothness. This piecewise-smoothness term also

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



J. Wei et al. / Robust Pointset Denoising through Line Processes

demarcates our approach compared to LASSO-like L1-based re-
construction, which uses a piecewise-flat prior. Moreover, we show
the advantage of exposing and exploiting the line processes for the
final reconstruction of the denoised pointset if needed.

3. Method

We now present our variational approach to geometric denoising
through robust and regularized tangent plane fitting of the initial
pointset. Note that throughout our exposition, (column) vectors will
be denoted with bold letters, while scalars will use italicized letters.

3.1. Problem formulation

From a pointset P̄={p̄i∈R3}n
i=1 of n 3D samples, we denote by

q̄i =
(
p̄ t

i 1
)t their corresponding homogeneous coordinates in R4.

For each input point i located at p̄i, we refer as N(i) its k-nearest
neighbor samples based on the Euclidean distance, where k is a
user-defined constant. From these neighborhoods, we denote by M
the pairs of indices (i, j) with 1≤ i, j ≤ n for which i ∈ N( j) or
j ∈N(i), representing all pairs of nearby input points. Furthermore,
we define for each input point a number of associated variables: we
denote by ti and hi two other vectors in R4 which will represent
two local tangent planes, implicitly defined in homogeneous coor-
dinates through {t t

i q=0 |q ∈ R4} and {h t
i q=0 |q ∈ R4} respec-

tively — the coordinates of these two vectors thus encode both the
plane normals and distances to the origin; we also define line pro-
cesses through two sets of variables: li j ∀i with j∈N(i)∪{i} (which
will help robust-fitting the local plane hi) and mi j ∀(i, j)∈M (which
will help enforce piecewise-smoothness); at last, we consider a set
of scalars si j ∀(i, j)∈M which will help us deal with normal ori-
entation. For convenience, we will denote by capital letters the sets
of all these types of variable, i.e., Q̄= {q̄i}n

i=1, T= {ti}n
i=1, and

H={hi}n
i=1 for the vectors in R4, and similarly for the scalar vari-

ables, with L={li j}i, j, M={mi j}i, j, and S={si j}i, j.

Our approach boils down to a variational formulation involving
the iterative minimization of an energy E dependent on H,T,L,M,
and S, formed as the sum of three coupled terms favoring respec-
tively local plane fitting term, piecewise smoothness, and stitching,
under simple constraints that avoid degeneracies. More precisely,
the explicit formulation of our energy minimization reads:

min
H,T,L,M,S

1
2

n

∑
i=1

∑
j∈N(i)∪{i}

αi
[
h t

i q̄ jq̄ t
j hi li j +Ψµl (li j)

]
︸ ︷︷ ︸

local fitting

+
λ

2 ∑
(i, j)∈M

βi j

[
||ti− si j t j||2 mi j +Ψµm(mi j)

]
︸ ︷︷ ︸

piecewise smoothness

+
η

2

n

∑
i=1

αi||hi− ti||2︸ ︷︷ ︸
stitching

s. t. ∥hi∥= 1 ∀i ∈ [1,n].

(5)

The local weights αi are used to weight the fitting energy by a
rough estimation of the area that point i covers, in order to accom-

modate for varying density in the input pointset P̄ through:

αi =
∑ j∈N(i) ||p̄i− p̄ j||2

|N(i)| ,

where ||p̄i−p̄ j||2 measures a small square area including points p̄i
and p̄ j. Similarly, the pairwise smoothness term is weighted by βi j,
derived from the area covered by the pair (i, j) via:

βi j =

αi

|N(i)| +
α j

|N( j)|
||p̄i− p̄ j||2

.

3.2. Interpretation of our variational formulation

The three terms of the energy E are simple to analyze. The first
(local fitting) term is designed to robust-fit a plane hi for each point
p̄i to its immediate neighborhood using line “outlier” processes li j
and their associated penalty function Ψµl . The variables li j will
naturally adapt to local inliers (resp., outliers) by going towards
1 (resp., 0), providing a reliable local estimate of the tangent plane.
The added constraint on the magnitude hi prevents the trivial (but
meaningless) solution hi = 0. The second (piecewise-smoothness)
term forces the robust alignment of neighboring planes ti and t j
using line “feature” processes mi j. One can regard this energy as
a “robust” Dirichlet energy: if two nearby planes are too different,
their associated mi j will become 0 (preferring the small penalty
Ψµm(mi j) rather than the large squared difference): sharp features
will thus not be subject to alignment, creating piecewise smooth-
ness. The scalar coefficients si j are also added to remove the ambi-
guity of orientation: while ti defines a plane,−ti (or any other scal-
ing) defines the same plane. Minimizing over si j will automatically
pick the correct scaling/sign, thus properly forming a Dirichlet-like
energy for tangent planes (Fig. 4 shows how not addressing the
possibly flipped signs severely affect denoising). Finally, the third
term is simply forcing the two tangent-plane estimates ti and hi for
any given point i to match via a straightforward quadratic penalty.
The use of two variables to encode what should be the same tan-
gent plane will become obvious when we describe our minimiza-
tion procedure in the next section: it will make our iterative mini-
mization procedure far simpler. Note finally that we use Geman and
McClure’s penalty functions [GM87] as described in Sec. 2.2, with
selectivities µl for fitting and µm for smoothness. Finally the values
λ and η are constants to tune the balance between enforcement of
local fitting vs. global piecewise-smoothness. Note that the norm
used for the term ||ti− si j t j||2 could be altered to weight the last
homogenous coordinate differently from the first three, to tweak
the balance between normal difference and distance-difference. In
practice, we kept the usual ℓ2 norm.

3.3. Optimization via alternating restricted minimizations

Our variational formulation seeking to balance local fitting and
global piecewise smoothness has been designed to be particularly
simple to optimize via alternating restricted minimizations. That is,
solving for a given family of variables while keeping all the other
fixed (akin to an expectation maximization or a coordinate-block
descent) is particularly simple as we now review.

Optimizing the line processes L and M. If all other variables
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Figure 4: Normal orientations. Because our tangent plane encod-
ing is not scale invariant, one must introduce a scalar si j when
comparing two nearby tangent planes through ||ti− si jt j||2: at any
point during the optimization, assuming si j =1 introduce spurious
artifacts (left) that an optimization over si j resolves (right).

are held constant, then minimizing our energy with respect to L
(resp., M) is trivial as it has an explicit optimal solution:

li j =

(
µl

µl +h t
i q̄ jq̄ t

j hi

)2

(6)

for outlier processes, while feature processes need to be set to:

mi j =

(
µm

µm + ||ti− si jt j||2

)2

. (7)

Optimizing orientations S. Similarly, optimizing the variables
si j when all other variables are held constant is done by setting
explicitly the optimal solution through:

si j =
t t
i t j

t t
j t j

. (8)

Optimizing tangent planes T. Because we used two separate
tangent planes (through T and H), optimizing for T is particularly
simple too as it consists in solving a weighted least-squares prob-
lem. Assuming that T (resp., H) is thought of as a n×4 matrix
storing one tangent plane ti (resp., hi) per row, then T is found ef-
ficiently by solving the following linear sparse linear system:

KT = W, (9)

with the left-hand and right-hand side matrices being K = ηdiag(αi)+λ ∑
(i, j)∈M

βi jmi j(ei− si je j)(ei− si je j)
t ,

W = ηdiag(αi) H,

where ei denotes the indicator vector of size n with the i-th element
set to 1 and all the others to 0, and diag(αi) represents a n×n diag-
onal matrix containing the values α1, α2, ..., αn on the diagonal.

Optimizing tangent planes H. Optimizing the local tangent
planes {hi} is the most complicated task, as it is akin to an eigen-
value problem due to the presence of a unit constraint — but this
constraint is necessary to prevent a collapse to the trivial and un-
desirable solution hi=0. Minimizing the (constrained) energy with
respect to H amounts to solving, for each i ∈ [1,n], the following
local non-linear problem:

min
hi

1
2

h t
i Aihi−b t

i hi s. t. ||hi||= 1, (10)

for Ai = αi(ηI+∑ j∈N(i)∪{i} q̄ jq̄ t
j li j) (I denoting the 4×4 identity

matrix), and bi = ηαiti. As detailed in [Hag01] (Lemma 2.2), the
optimal solution can be expressed in terms of the eigenpairs of Ai,
computed through a combination of orthonormal eigenvectors after
a diagonalization of Ai for non-degenerate cases of bi, which is our

case —see App. A for computational details. Note that although
using only a unit constraint on the normal of hi, the inverse matrix
in Eq. (11) would no longer be diagonal, making Eq. (12) far more
complex to solve [Hag01]. We thus prefer a constraint on the full
norm of hi, as it also accounts for the distances to planes. Since
each matrix involved is only of size 4×4 and that each local tangent
plane can be computed individually and in parallel, evaluating all
the optimal hi is still simple and efficient computationally.

Optimization order. While one could adopt any order for the
iterated solves required in the global minimization process, we first
solve the local fitting stage by updating L and H; next, from the re-
sulting approximations of the local tangent planes, we update M, S,
and T. We also found systematically improved results if we iterate
this latter step twice, see the pseudocode of the whole minimization
process in Alg. 1. Note that we typically stop optimizing when we
reach a maximum number of iterations, or when the total energy
does not change by more than 1% over three iterations.

Algorithm 1 Robust denoising via line processes
Input: noisy point cloud {p̄i}n

i=1, k for k-nearest neighbors, line-
process selectivities µm, µl , weight for smoothness λ

1: Initialize sets M and N using k-nearest neighbors search
2: H← 0n×4
3: T← 0n×4
4: li j← 1, ∀i, j ∈ N(i)∪{i}
5: mi j,si j← 1, ∀(i, j) ∈M
6: iter← 0
7: while iter < maxIter do
8: /* local tangent plane fitting step */
9: update H by solving Eq.(10)

10: update L using Eq.(6)
11: /* global piecewise-smoothness step */
12: innerIter← 0
13: while innerIter < 2 do
14: update T following Eq.(9)
15: update M using Eq.(7)
16: update S using Eq.(8)
17: innerIter← innerIter+1
18: end while
19: iter← iter+1
20: end while
21: /* final denoising (Sec. 3.4) */
22: for p̄i ∈ V do
23: project p̄i onto plane ti to obtain pi
24: end for
Output: denoised point cloud {pi}n

i=1

3.4. Final denoising

The result of our minimization provides all the necessary tools to fi-
nalize pointset denoising — in particular, having the line processes
readily available lends crucial help to cleaning up and handling
sharp features.

Outlier indicator. The line processes li j were used to sort out
inliers from outliers. We can then use their final values as a robust
indicator of the presence of outliers as seen in Fig. 6. As li j is a pair-
wise indication between neighboring points, we declare an input
point i to be an outlier of the pointsets if a majority of its neighbors
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Figure 5: Energy minimization. Our alternating restricted mini-
mizations reliably decrease the regularized fitting energy in very
few iterations, as demonstrated here on four of the models of Fig. 1.

j ∈ N(i) are associated to small l ji values. In our implementation
we consider the threshold where 90% of the l ji values are below
0.5. We note that the precise value of the percentage and threshold
is not particularly important: changing them to, e.g., 80% of values
below 0.3 typically changes the number of identified outliers by a
negligible number of points in our examples.

1.00.0

Figure 6: Outlier indicator: Color-encoded segments between i
and j are associated to the value min(li j, l ji), after minimization of
our regularized fitting energy. This visualization reveals that out-
liers are clearly attached to small li j (or l ji), while inliers values
range between 0.75 and 1 depending on the local curvature.

Feature indicator. Similarly, the line processes mi j were used to
sort out smooth vs. sharp transitions between tangent planes during
the optimization. So we declare a point i as being close to a feature
if more than 70% of the values of the m ji’s ∀ j are below 0.5. Here
again, the exact values hardly matter, see Fig. 7.

0.0

1.0

Figure 7: Feature indicator: After minimization of our regularized
fitting energy, a visualization of the line processes mi j by segments
between i and j with a color corresponding to its magnitude reveals
that small values all correspond to the local presence of sharp fea-
tures, while values close to 1 can be seen everywhere else, with
small variations due to local mean curvature.

Denoising and cleaning. The final denoising step is then easily
achieved: an input point i located at p̄i is simply projected onto
its associated tangent plane ti, thus forming a denoised sample:
pi=p̄i−ni(t t

i q̄i)/∥ni∥2 where ni = (ti[1] ti[2] ti[3])
t is the 3D vec-

tor equal to the first three coordinates of ti, —- except if it was

recognized as an outlier, in which case we simply remove it as its
projection could be arbitrarily bad.

Optional feature improvement. Points on or around the fea-
tures can be further processed, in particular if the denoised
pointset is to be fed to a surface reconstruction algorithm af-
terwards so as to better capture sharp features. Currently, a
point i near a feature is simply projected to its own opti-
mized tangent plane ti. Consequently, sharp features may con-
tain very few or no points on the features themselves: this
may reconstruct jagged features when fed to a reconstruction
algorithm based on interpolating meshes. Therefore, we found
more productive to use our feature indicator based on the
feature processes: if a point is declared
to be near a feature, then we slightly
modify the projection so that it is pro-
jected on the most likely position of
the nearby feature. To achieve this, we
perform clustering on the local t j for
all j such that (i, j) ∈ M of its neigh-
borhood using the DBSCAN clustering
method [EKS∗96] where we ask for a maximum of three clusters.
If only two clusters are found, we are likely to be in a typical fea-
ture line or curve (see inset, yellow sample on the right as part of
the anchor shape); we thus compute the intersection line between
the two planes that the centroid of these two clusters define: we
then project p̄i to the resulting line. If three clusters are found, we
are more likely to be near a cube or polyhedral corner (see inset,
yellow sample on the left); we then pick the intersection line of the
two centroid-based planes to which p̄i is closest in terms of orthog-
onal distance, and project the sample to this line as above. We found
this simple post-processing to be the simplest reliable way to pro-
vide better shape reconstruction. Approaches using more involved
local feature reconstructions are possible as well, but we kept the
simplest approach to focus on the “raw” power of line processes.

tangent projection feature projection

Figure 8: Feature improvement: While our final projection to the
local tangent plane provides a proper denoising even near features
(left) due to the use of feature processes, one can improve the qual-
ity of downstream interpolating reconstructions by, instead, project-
ing near-feature points to guessed sharp features (right).

3.5. Discussion

In this section, we have adapted the traditional robust approach of
image denoising [BR96] to the case of 3D pointsets via a robust and
regularized fitting of local tangent planes. The precise form of the
energy we minimize has been selected to offer a simple iterative
minimization through the use of line processes and soft enforce-
ment. While many other formulations could have been simpler, we
settled on this choice for its efficiency and reliability. Convexity

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



J. Wei et al. / Robust Pointset Denoising through Line Processes

could have even been offered by first computing a robust fitting
of local tangent planes t̂i, then only using the smoothness term to
better align these planes; however, the level of noise and outliers
that we are seeking leads irremediably to initial guesses of tangent
planes that are significantly off, so relying too much of these static
fitting planes fails to provide good results: large errors are very of-
ten ending up selected as features instead of being properly regular-
ized. Similarly, keeping one single variable (for instance, ti) instead
of two in order to encode a local tangent plane turns the entire min-
imization into a large constrained and non-linear optimization —
our soft stitching term breaks this large and difficult minimization
into a series of simple and/or local steps, eventually requiring much
less computational time and a far-simpler implementation.

One of the biggest benefits of our formulation is its ability to
“learn”, as iterations proceed, which samples are outliers and where
sharp features are likely to be by regularizing the local tangent
planes: it thus requires no input normals (although if they are avail-
able, they can be used in the initialization of the tangent planes),
and one can tweak the amount of regularization while existing
methods like bilateral filtering can only add further iterations —
which does not allow for local adaptivity of the amount of smooth-
ing performed. Next, we discuss how our approach behaves on a
variety of geometric objects and for diverse types of noise, noise
levels, and outlier density.

4. Results

We now present a series of results and comparisons to help under-
stand how our approach behaves and differs from previous works.
In order to provide a fair assessment, we use both CAD models
(containing sharp features) and organic shapes with synthetic noise
and outliers, as well as real-world scanned data; we also provide
off-the-shelf reconstructions derived from our results so as to bet-
ter evaluate the quality of our denoising strategy. Note we did not
perform any post-processing on our results: even if straightening
of features or local smoothing could be easily added to drastically
improve the results, we refrain from such practices. We will release
our code upon publication of this paper.

4.1. Setup

Starting from a raw input pointset rescaled to fit a unit cube
(to ensure scale invariance), implementing our approach is rather
straightforward, and selecting its few parameters is quite intuitive.

Implementation details. We implemented the denoising approach
in C++, and run all our tests on a desktop equipped with a 6-core
Intel Xeon® W-2133 CPU at 3.60GHz and 64G RAM. We follow
the approach of [Hag01] to solve Eq. (10) as described in App. A
in parallel with 6 threads, while the positive-definite linear system
from Eq. (9) is solved using a Conjugate Gradient solver with an al-
gebraic multigrid preconditioner [Dem20], which scales well with
the problem size.

Parameter settings. Our variational approach relies on four main
parameters: the two selectivities for feature and outlier processes
µm and µl , and the two coefficients λ and η that scale, respec-
tively, the smoothness term and the stitching term of the energy

we minimize. Selectivity µl can be set to 5×10−9 as it roughly
defines the squared distance to a fitting plane that would be consid-
ered as too large to be an inlier. Selectivity µm, instead, influences
the minimum normal angle change that one must witness to de-
cide that a sharp feature is happening: as Fig. 9(top) demonstrates,
a small value identifies the edges and corners of a noisy sampled
cube, while higher values will assume that there is no features
present. The effect of λ is also clear, as its value directly controls
the strength of the piecewise-smoothness term: as Fig. 9(bottom)
shows, values around 0.5 may leave oscillating faces on the noisy
cube, while 3.0 enforces flatter sides. This last parameter was found
to be the most valuable to tweak depending on the data: based on
the result using a default λ= 1.0 value, one can relaunch the op-
timization from the current optimal tangent planes after changing
the weight λ to lower or increase the smoothness of the final de-
noising very efficiently. Finally, we set η, the stitching strength, to
5000 for all results in order to reliably force the agreement of ti
and hi. Incidentally, one can also adjust the number k of neighbors
used to perform the local fitting neighborhood and to define the
line processes. In practice, we found that selecting k=20 leads to
systematically good results; however, the noisier the input data is,
the larger this value could be set to as it offers marginal improve-
ments by drawing more neighbors into local estimates — in Fig. 13
for instance, we obtained better results by increasing the number of
nearest neighbors to 150 for very large amount of noise. If noise
is not particularly prominent, using 20 offers a sufficiently large
neighborhood to help recognizing outliers and features reliably.

Reconstruction test. One of the common downstream applica-
tions of pointset denoising is mesh reconstruction. In order to both
test the quality of denoising and offer visually-clear representations
of our results, we sometimes use reconstructions in our figures. We
chose two existing interpolating methods as “neutral” reconstruc-
tion methods: the Advancing Front [DCS22] (typically, for low
noise or CAD models), and Scale Space techniques [vL22], both
from the CGAL [CGA22] library. We display the best of these two
reconstructions to highlight the potential flaws of the results.

input

µm=0.015 µm=0.3 µm=1.9

λ=0.5 λ=1.0 λ=3.0

Figure 9: Effects of parameters: On a simple noisy cube example
(Gaussian noise with a standard deviation equal to 1% of the model
diameter), running our minimization with varying values of the se-
lectivity µm captures (left) or do not capture (right) the sharp edges
(top) ; if the smoothness strength λ is changed, the result ends up
with more or less flat faces (bottom). We used λ = 3.0 for the top
row, and µm = 0.13 for the bottom row.
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4.2. Performance

Our iterated restricted minimization strategy always resulted in
drastic loss in the energy to minimize, as shown on four exam-
ples in Fig. 5; note that even if the energy is not technically convex
(due to the norm constraint), we witness a mostly monotone de-
crease. In Tab. 3, we show that the global linear solve is the slowest
part of an iteration of the minimization, but even this stage scales
roughly linearly with the number of samples, see Figs. 10 and 11
for examples with over a million samples. As expected, we also
see that the execution is linear in the number of neighbors used. In
practice, our minimization-based method can be slower than meth-
ods using fixed blending of sample values to provide denoising, but
surprisingly, the efficiency of our approach makes the difference
only marginal for the examples we tried. As a representative exam-
ple, a 50K-sample noisy version of the accessory model (as used in
Fig. 14) takes three iterations of Bilateral Filtering [AGJ∗22] for a
total of 13.5s, while our approach takes 10 iterations to converge,
for a total execution time of 16s. On the same example, APSS and
RIMLS [CCC∗08] take 19s and 35.5s respectively; in comparison,
GLR [ZCN∗19], which only runs on MatLab, took 400s, while
PointCleanNet [RLBG∗20] took 438s on a NVidia GPU Tesla K80
using CUDA 10.1.

input our result

Figure 10: Large-scale denoising I: Our method exhibits good
scalability in problem size: for an indoor scan with 1.15 million
points, our denoising method takes 115s (convergence is reached in
5 iterations), with about 3s for local fitting and 20s for the global
linear solve per iteration.

4.3. Robustness to outliers

Eliminating outliers in raw poinsets has been a long-standing
issue which received a large amount of attention. Robust ap-
proaches exist, often based on eigenanalysis, machine learn-
ing [RLBG∗20], various thresholding strategies [WKZ∗16], or op-
timal transport [CCSM11, DCSA∗14], and there are often parame-
ters to tune in order to correctly identify outliers. In our denoising
method, the fact that we know that we are looking for a surface
embedded in R3 makes the task particularly simple and robust: the
outlier indicator from Sec. 3.4 obtained after optimization can re-
liably identify outliers as the outlier processes will jointly declare
these samples as too unfit to serve for local fitting. And indeed,
Fig. 12 demonstrates that the amount of outliers added to a noisy
pointset does not noticeably affect the denoised results, which we
fed to a neutral reconstruction algorithm [vL22] to better illustrate
the resulting shape.

4.4. Robustness to Gaussian noise

Gaussian noise is the usual go-to noise type to test denoising algo-
rithms. However, the amount of noise is often quite small compared

Figure 11: Large-scale denoising II: After applying our method
on a large-scale real scanning-scene from [KPZK17] (∼7M points)
where noise type and level vary in space, we visualize the original
vs. denoised pointset on the statue at the center of the scene in
closeup insets: face, collar, hand and book are well reconstructed,
with clear sharp features, e.g., on the collar and the open book.

to the features of the shape, and the noise is often only added in the
normal direction, which renders denoising simpler. Moreover, most
denoising methods take a mesh as an input, which still provides a
reliable way to deduce normal orientation. On raw pointsets, nor-
mals and their orientation are simply not available — and particu-
larly difficult to infer when the noise level is large enough. While
many approaches can handle small noise (and ours too, as demon-
strated previously in Figs. 1 and 12), we focus our evaluations here
on larger noise magnitudes to render the visual inspection of the
results much more obvious. Once again, we also provide the visu-
alization of a neutral reconstruction (Sec. 4.1) run on the denoised
results to make the flaws more visually salient. Fig. 13 shows how
badly bilateral filtering can fail to properly denoise if the amount
of isotropic Gaussian noise (not just along the normal) is too large
— in this example, for a standard deviation of 1%, 2%, and 3%
of the model diameter estimated by FPS (farthest point sampling
technique [ZCN∗19]). Our approach, instead, degrades gracefully
as the noise amplifies. Similarly, we compare other previous meth-
ods (namely, APSS [GG07], RIMLS [OGG09] (both included in
MeshLab [CCC∗08]), Bilateral Filtering [HWG∗13] (implemented
in [AGJ∗22]), GLR [ZCN∗19], and PointCleanNet [RLBG∗20]) to

noutlier =500 (0.02%) noutlier =1000 (0.4%) noutlier =2000 (0.8%) noutlier =5000 (2%)

Figure 12: Robustness to outliers: For a moderately noisy 25K-
sample kitten (taken from [WLT16]), the addition of 500, 1K, 2K or
5K outliers barely changes the final denoising as outlier processes
quickly identify these spurious points from all the samples.
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ours in Fig. 14, exemplifying the brittleness of denoising methods
in the case of large noise (note that for the methods needing a nor-
mal per point, we use Meshlab’s normal estimator to offer good
approximations). These methods were selected to represent a vari-
ety of prior art and due to the existence of available implementa-
tion (either from the authors’ repository, or from CGAL [CGA22]
or MeshLab [CCC∗08]) for transparency. We also provide various
quantitative comparisons in Tab. 1: in order to measure the geo-
metric error of our denoising technique and compare it to state-
of-the-art methods, we use three classical error metrics as pro-
posed in [ZCN∗19], namely mean-square-error (MSE, defined as
the average between the symmetrized squared Euclidean distances
between ground-truth points and their closest denoised points),
signal-to-noise ratio (SNR, a function of the log of the inverse
of MSE), and mean city-block errors (MCD, a variant of MSE in
which the ℓ2 norm is replaced by ℓ1 norm). While our approach
seems to outperform the others on most pointsets, one should no-
tice that these errors are not representative of the “visual” quality:
often, a lower value of MSE or MCD or a larger value of SNR
does not imply a visually better result. Nevertheless, we found that
our approach is the only one to be always among the best ones,
both visually and in terms of error metrics — sometimes by a large
margin. Note that all other methods required parameter tuning to
provide optimal results: we selected what we found to be the best
values — for instance, we varied the neighborhood size from 50 to
150 for the GLR and bilateral methods, and the filter scale from 5
to 15 for the APSS and RIMLS methods depending on the models.
For our method, we vary the neighborhood size k from 50 to 150
based on the level noise and the smoothness weight λ from 1.0 to
2.0, see Tab. 2.

noise 1% noise 2% noise 3%
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Figure 13: Robustness to noise levels: On this ACCESSORY CAD
model, adding a Gaussian noise with a standard deviation equal to
1% of the model diameter (left column) already exceeds the abil-
ity of bilateral filtering, while our approach still returns a nearly
clean denoised model. Doubling (middle), then tripling (right) the
standard deviation only slowly degrade our results, but render the
bilateral result unusable.

4.5. Robustness to raw pointsets

For certain denoising methods, a (possibly noisy) normal must be
provided with each sample of the input pointset. We found out that
many such methods are quite sensitive to errors in the normal; for
instance, providing a PCA estimate of the normal (which, in the ab-
sence of outliers, should be about the best guess one can derive) can
result in poor result for a bilateral filtering approach [HWG∗13],
whereas our denoising involves the variational establishment of its
own normal field, thus resulting in significantly better results, as
demonstrated in Fig. 3.

4.6. Robustness to real data

We also compared our approach to existing methods on real
scan pointsets, issued from Microsoft Kinect® v1.0 and provided
in [WLT16]. Here, the noise is neither close to Gaussian, nor spa-
tially constant, so it is a real-life denoising example rather than a
mere academic exercise. As Fig. 16 demonstrates, our approach
holds its own on this type of data too. Indeed, GLR [ZCN∗19]
code systematically fails on these examples as their implementation
assumes the absence of collinear points among neighbors, which
happens not to be true in practice; and surprisingly, even machine-
learning approaches which use some of these examples as train-
ing do not provide very good results. Note that here also, methods
needing a normal per point are provided with the normal estimate
from MeshLab [CCC∗08].

4.7. Visualization

Finally, we provide a few examples of visualizations of the results
of our energy minimization, as they provide useful insights on our
approach. It is instructive to see in Figs. 6 and 7 for instance that
the line processes are able to clearly find outliers and sharp fea-
tures, while the range of the processes indicates clearly the pres-
ence or absence of local curvatures. Similarly, the error maps dis-
played in Fig. 15 compare the local denoising errors generated by
our approach vs. PointCleanNet [RLBG∗20]. Here again, our en-
ergy minimization using line processes is able to identify features
and outliers quite well, despite the amount of noise present in the
input data.

5. Limitations and future works

Denoising 3D data with little to no prior knowledge on the noise
type and amount is a difficult task, for which no method can ar-
gue to provide a definite, general solution. What we presented in
this paper is a solution based on a rather classical variational ap-
proach balancing local fitting and global smoothness, to which we
incorporated robust statistics and line processes that were initially
proposed in image processing. We were able to outperform prior
art in the challenging case of raw pointsets where no normals are
known, for which very few existing techniques apply. However, this
first use of line processes for denoising has a number of remain-
ing limitations. First, thin structures are still impossible to extract
for very noisy data: our algorithm does not always reconstruct the
tip of a cone perfectly for example, see Fig. 17. Fixing this issue
would most likely require dedicated RANSAC-like approaches to

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



J. Wei et al. / Robust Pointset Denoising through Line Processes

APSS Bilateral RIMLS GLR PointCleanNet Ours

F A
N

D
IS

K
C

A
D

2
A

N
C

H
O

R
A

C
C

E
S

S
O

R
Y

J O
IN

T
PA

R
T

Figure 14: Stress tests. For various CAD models sampled with a very large noise level (Gaussian noise for a standard deviation of 3%
of the model diameter), we test interpolating reconstructions of the denoised results of APSS [GG07], Bilateral Filtering [HWG∗13],
RIMLS [OGG09], Graph Laplacian Regularization [ZCN∗19], PointCleanNet [RLBG∗20], and our approach.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



J. Wei et al. / Robust Pointset Denoising through Line Processes

Input APSS Bilateral RIMLS GLR PCNet Ours
1.15 0.74 1.57 0.559 0.484 0.328
3.51 2.94 4.33 2.60 2.01 1.91
2.74 2.93 2.60 3.05 3.12 3.29
261 245 250 181 121 195
64.7 63.8 64.9 54.5 48.2 59.5
3.57 3.60 3.59 3.73 3.91 3.70
1.39 0.866 2.23 0.545 0.544 0.385
4.12 3.42 5.36 2.74 2.49 2.42
2.98 3.18 2.77 3.38 3.38 3.53
5.37 4.39 5.94 31.9 2.88 1.71
8.43 7.89 9.09 19.0 5.91 5.00
4.65 4.73 4.60 3.87 4.92 5.14
0.788 0.481 1.14 0.347 0.471 0.174
2.96 2.44 3.81 2.10 1.95 1.48
2.53 2.74 2.36 2.88 2.75 3.18
2.08 1.11 3.54 0.731 0.397 0.418
5.01 3.85 6.81 3.19 2.36 2.34
3.22 3.50 2.99 3.68 3.94 3.92

Table 1: Quantitative comparisons: We measure various er-
ror metrics (namely, MSE (×10−3), MCD (×10−2), and
SNR (×10)) w.r.t. the clean shape for denoising performed
with, respectively, APSS [GG07], Bilateral Filtering [HWG∗13],
RIMLS [OGG09], Graph Laplacian Regularization [ZCN∗19],
PointCleanNet [RLBG∗20], and our approach. While PointClean-
Net outperforms the variational approach presented here on a few
examples, we systematically exceed (lower MSE and MCD, higher
SNR) all other methods.

be incorporated within our approach. Second, we only perform first
order fitting (tangent planes), but higher-order fitting like quadrics
could further improve denoising by detecting round parts. Third,
our energy formulation could also be improved, for instance by
making λ (the smoothness strength) adapted to the detected noise
level so as to add spatially just the right amount of normal smooth-
ness — right now, this coefficient can of course be tuned spatially
by the user, but an automatic treatment would be highly prefer-
able — or by using the GNC continuation method [BZ03] to ac-
celerate convergence. Other piecewise smoothness energies, such
as Willmore’s, could also be explored. We have also not explored
more advanced treatment of detected sharp features: incorporating
a piecewise-smoothness term for feature curves for instance could
improve the results tremendously. Having direct access to the line
processes (unlike current robust statistics approaches) should ren-
der these ideas easier. Finally, we note that the issue of structured
noise or outliers (e.g., artificial but structured and repeated clumps
of points) is also not addressed by our new approach.
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PointCleanNet Ours

Figure 15: Error map: For the JOINT and the PART models from
Fig. 14, we show the “error map” of PointCleanNet ( [RLBG∗20],
left) vs. our results (right), i.e., each point of the denoised results
is colored based on its shortest distance to the ground-truth sur-
face. At this large level of noise, many noisy samples are left in
the machine-learning based results, which is not the case for ours;
but a small inflation of the surface can be seen due to the normal
smoothness induced by our energy minimization.
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Appendix A: Non-linear local plane fitting

Solving for Eq. (10) amounts to minimizing a quadratic function
over a sphere. The approach of [Hag01] to solving this nonlinear
problem is as follows. First, we introduce a Lagrangian multiplier
γ for the norm constraint. The optimality conditions with respect to
h and γ are thus expressed as:{

Ah−b+ γh = 0
∥h∥= 1

.

From the eigen-decomposition A=UΣUt , we create a new variable
z by substituting h = Uz. Since U is orthonormal, the constraint on
z remains a unit norm; thus the above equations reduce to{

Λz−Utb+ γz = 0
∥z∥= 1

,

where Λ is a diagonal matrix containing A’s eigenvalues. Denoting
g = Utb and solving for z from the first equation, we get

z = (Λ+ γI)−1g =
(

g1
λ1+γ

g2
λ2+γ

g3
λ3+γ

g4
λ4+γ

)t
. (11)

Plugging this into the second equation results in a nonlinear equa-
tion in γ, namely:(

g1
λ1 + γ

)2

+

(
g2

λ2 + γ

)2

+

(
g3

λ3 + γ

)2

+

(
g4

λ4 + γ

)2

= 1. (12)

Given gi and λi, the solution can be degenerated as discussed
by [Hag01], but trivial solutions are easy to find. For non-
degenerated cases, finding a root of the above equation between
the bounds given in [Hag01] yields a solution, from which z, and
then h are directly deduced.
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