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Abstract
Scientific computing is an increasingly crucial component of research in various disciplines. Despite its potential,
exploration of the results is an often laborious task, owingto excessively large and verbose datasets output by these
simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate
an informative visualization and deeper understanding of the underlying system. However, traditional methods
leave much room for improvement.

In this article we investigate the visualization of large vector fields, departing from accustomed processing algo-
rithms by casting vector field simplification as a variational partitioning problem. Adopting an iterative strategy,
we introduce the notion of vector “proxies” to minimize the distortion error of our simplification by clustering
the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with
respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representa-
tions of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of
three-dimensional vector fields.

Categories and Subject Descriptors(according to ACM CCS): I.3.0 [Computer Graphics]: Flow Visualization

1. Introduction
With the continued advance of computer architectures, un-
precedented computational processing power is available to
any scientist whose research may benefit from computer
modeling or simulation. Many disciplines have adopted such
methods, motivating sub-branches in science and engineer-
ing; molecular modeling and computational fluid dynam-
ics (CFD) are examples of this. Today, computers allow re-
searchers to perform increasingly complex 3D simulations
using extremely fine grids to capture even the most sub-
tle of detail. These simulation runs typically generate many
gigabytes of data, whereby post processing and visualiza-
tion become critical steps in the pipeline. The demand for
tools to analyze and extract the relevant information from
these datasets has been recognized, and many approaches
and techniques proposed.

We focus on the representation of 3D vector fields, a chal-
lenging topic in scientific visualization for which no natural
representation exists. Unlike geometry, color, or texture, vec-

tor fields are difficult to depict clearly, and thus warrant spe-
cial attention to develop an intuitive visual understanding:
given a static field, we are confronted with up to six dimen-
sions of data (position and affiliated vector in 3D) that must
be projected onto a 2D computer screen. We begin by re-
viewing the strengths and weaknesses of existing visualiza-
tion tools as a motivation for our work.

1.1. Brief Review of Visualization Techniques
Despite the fairly recent invent of computer modeling for
scientific purposes, the important task of visual depictionof
flow fields (to convey, inspect, and analyze their content) has
some history, in which a few methods have become popular.

Hedgehog and GlyphsSince an arrow icon is typically
used to depict a vector, a natural approach is to define vari-
ous base points in our field at which to sample the vectors,
and display the associated arrow icon. Samples can be taken
throughout the field and allows us to present a complete view
of both the magnitude and direction in a single image. Unfor-
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Figure 1:Variational Segmentation: Error-driven clustering
is performed on various flow fields using theL2 metric for
vector comparisons. Each color represents an area in which
both direction and magnitude of the field is very similar, pro-
viding an otherwise hidden insight into the system.

tunately, locality is a significant concern with this concept:
each sampling only depicts the flow at a specific point in the
field; sub sampling the field will miss small yet important de-
tails, while increasing this resolution will lead to a very clut-
tered visualization. In [LAK ∗98], arrowheads are replaced
with more advanced glyphs in attempt to better present mul-
tivariate data.

Contraction and Topological Structure Rather than vi-
sualizing vector fields directly, many have proposed to “con-
tract” the data into scalar quantities that representsalient
characteristics of the field. Examples of important physi-
cal features that can be presented in this fashion include the
magnitude, the divergence, or the vorticity of the flow. In the
same vein, the topological structure (critical points, separa-
tion lines–see [GL91]) can be depicted as a very coarse, yet
highly informative representation of a vector field’s content.

StreamlinesAn alternate approach defines field lines that
are always tangential to the flow [TB96, SM02]. Given a
vector field that doesn’t vary in time, we could imagine drop-
ping a particle into the field at a specific point and tracing
its path as the flow field pushes and pulls the particle along
the direction of the field. Streamlines can often provide an
elegant solution in 2D, but suffer from similar locality prob-
lems as the arrow plot - a poor placement of particles could
miss important details, for example; yet, too many stream-
lines will again cause confusion.

LIC Line Integral Convolution [CL93] has become a pop-
ular method for flow visualization in 2D. A texture, typically
an image of random noise, is applied to the vector field and

pixels of this image are advected along the flow and inter-
polated to generate a new image of the noise after being
distorted by the field. LIC can also be used to depict vec-
tor fields that are defined on arbitrary surfaces embedded in
3D. In both cases, resulting images capture the details of 2D
flows extremely well.

(a) Hedgehog (b) Contraction (c) Streamlines (d) LIC

Figure 2:Popular techniques of vector field visualization ap-
plied to a non-trivial 2D dataset.

Many of these visualization strategies have proven ex-
tremely effective on visualization of 2D flow fields, and
even time varying 2D vector fields. And in [LKD∗01], a
mechanism was presented to evaluate the effectiveness of
any given strategy. However, none of these basic methods
translate well into three-dimensional flow field visualization.
Simple translation of space filling methodologies, such as
glyphs or LIC, fail because perceptually the end viewer re-
quires opaque 3D structures and reasonable depth cues in
order to discern among the layers of data being displayed.
Approaches that use volume rendering techniques on 3D
LIC [RSHTE99] or advanced stream surfaces with texture
hints (based on [GIS03]) and lighting hints [MTHG03] have
improved the efficacy of 3D vector visualization, although
these techniques quickly produce displays that are too tax-
ing to comprehend for anything beyond the most simple of
flows. For further general discussion on recent advances,
please consult [PVH∗02]

1.2. Vector Field Simplification through Clustering
A remedy for reducing the clutter is to minimize the amount
of data presented to the user while converting that which
is presented into simple yet descriptive iconic elements. A
common approach is to employ clustering of similar con-
tiguous vectors in order to represent large regions of the
flow by a single “average” vector. This was used in [TV99]
and also [GPR∗00]: an extension that uses the Cahn Hillard
model of physical-based clustering as well as a phase sepa-
ration model. In more recent work, [DW04] use a Voronoi
tessellation based algorithm for cluster creation and mean-
while in [GPR∗04] we see the concept of algebraic multi-
grids to find stable clusters in 2D and 3D. As a significant
pitfall, however, these clustering schemes generally fallshort
by concentrating on results in 2D, where other methods have
proven more effective.

1.3. Contributions
We hereby propose a vector clustering technique based on K-
means by extending the work of [DW04], which is not only
efficient and stable, but can also use different, physically-
based metrics in order to provide a meaningful segmenta-
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tion of the input vector field; we explore distance metrics
based on direction, gradient, curl, and divergence to offera
wide range of tools applicable to various vector visualiza-
tion goals in 2D and 3D. After demonstrating the efficiency
of this new technique, we use it as a basis for visualizing
turbulent vector fields.

2. Variational Segmentation

To depart from most of the traditional methods, we cast such
flow field data mining as avariational partitioning problem.
Given a large, verbose dataset our approach endeavors to
cluster together areas of the field with low ‘entropy’: ideally
“similar” vectors are grouped together because the relative
importance that each individual vector carries with respect
to the entire field is very low. By simplifying a vector field
into several regions, a global distortion error can be defined
and an attempt made at minimizing this quantity by applying
an iterative strategy that produces locally optimal partitions.
The entire segmentation process as we describe it next is
directly inspired by [CSAD04] which provides a deeper dis-
cussion of all the steps involved, but in the context of geome-
try instead of vector fields; we strongly recommend referring
to this paper for further explanation.

2.1. Input Data and Concepts

Discrete Vector FieldsOur algorithm is applicable to dis-
crete vector fields: computers—being machines of finite
precision—are inherently more suited to discrete data rather
than continuous representations. In the discrete setting,a
mesh delimits the surface or volume in which a vector field
is defined. For each primal element of this mesh (triangle
in 2D, tetrahedron in 3D), there exists an associated vector
- this type of data is known as apiecewise constantfield
since the flow field is considered constant within each pri-
mal element. It is this geometry (and associated field) that
we attempt to simplify through clustering.

K-partitioning The idea of clustering vectors of a
flow field into a partition to help approximation has
already been used many times in scientific visualiza-
tion [TV99, GPR∗00]. We entertain the idea that an approx-
imating vector is essentially a surrogate linear approximant
for a set of originally grouped vectors that share similar char-
acteristics. In this context, clustering a vector field intoa par-
tition with k regions appears to be a natural way to efficiently
resample our data. Each regionRi of a partitionR can then
be summarized by an “average” vectorproxy Vi (average
with respect to a given distortion metric). Traditionally the
partitioning is achieved in a greedy fashion, and although
we base our approximation on partitioning too, we will see
in the following sections that our method iteratively seeks
a partition that best represents the dataset: this variational
nature will make the results more striking due to their near-
optimal qualities.

2.2. Defining Local Distortion Measures

Now that we have a representative vector proxy for each
region of the mesh, a distortion error is defined that deter-
mines how close the simplification is to our original flow
field dataset. To find the error of an initial input vector, we
simply compare it with its newly associated representative
vector proxyVi and check the local deviation from this aver-
age, i.e., the local distortion. Thus by integrating the distor-
tion error between each vector in a regionRi and its vector
proxy Vi (i.e., by summing the difference between a vector
and its associated proxy and weighting the error proportion-
ally to the area (in 2D) or the volume (in 3D) of its primal
element), we obtain the total error in a given regionRi . We
can then compute a global error for the whole vector field by
adding together the total distortion of every regionRi . Let
us now put it in mathematical terms: given an error metricE,
a desired number of proxiesk, and an input meshM, we call
theoptimal vector proxies a setV of proxiesVi associated
with the regionsRi of a partitionR of M that minimizes the
total distortion:

E(R,V) = ∑
i=1..k

E(Ri ,Vi) (1)

If we consider usingL2 as our error metricE, theL2 error
of a vector proxyVi and the associated regionRi is sim-
ply the distance of the vectors and their representative, inte-
grated over the volume (or surface) of the region:

EL2(Ri ,Vi) =
���

x∈Ri

‖v(x)−V i‖
2dx (2)

In a discrete implementation, we compute theL2 error of a
region as the sum of distortions between all primal elements
Pi ∈Ri (with volume|Pi | and vectorvi ) and the representing
vector proxy:

EL2(Ri ,Vi) = ∑
i∈Ri

‖vi −V i‖
2|Pi | (3)

Now for a regionRi , the optimal vector proxyVi is sim-
ply (∑Pi∈Ri

|Pi |vi)/T whereT is the total 3D volume (or
area in 2D) of the region. Using this distance metric to drive
the iterative partition optimization (detailed in Section2.4),
we observe physically relevant partitions such as shown in
Figure1.

2.3. Defining Higher-Order Measures

To compute first-order-metric clustering based on diver-
gence, gradient, or curl, we must calculate these quantities
for each primal elementP. Generalizing the distortion mea-
sures specified in Section2.2, we consider first-order metrics
over piecewise-linearvector fields (rather than piecewise-
constant). In this setting, flow is defined at each vertex in
our mesh, and therefore the div, grad and curl will be con-
stant per primal elementP. At a given pointx, our flow f
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(a) Vector Field) (b) Directionality clustering

(c) Gradient tensor clustering (d) Vorticity clustering

Figure 3: Application of various distortion metrics, 100
proxies.

is an interpolation of the field defined by the vertices of the
encompassing element:

f (x) = ∑
i

φi(x) fi (4)

with φi being the piecewise-linear basis function valued 1
at nodexi , and 0 at all other nodes ofP, and fi being the value
of f at nodexi . Due to the local support of the basis functions
φi , the value off within a tetrahedron which is defined by
(xi1,xi2,xi3,xi4) is simply: f = φi1 fi1 +φi2 fi2 +φi3 fi3 +φi4 fi4.

Figure 4:Basis functions: Value ofφi over a tetrahedron is
shown via the color gradient. The vector∇φi has length1/h
where h is the height of the tetrahedron from base faceF̃.

Notice that∇φi is nothing more than the vector orthog-
onal to the face opposite toi, F̃ in the direction of i,
where |∇φi | = (3 · |P|)/|F̃ |. The direction of∇φi is eas-
ily found as the cross product of two edges ofF̃ . In 2D,
the same concepts apply:F̃ is replaced with an edge ˜e and
|∇φi | = (2 · |P|)/|ẽ|. Having computed∇φi , we are now
able to calculate the gradient off (∇ f ), or its divergence
(∇· f ), or its curl (∇× f ) very easily; please refer to [PP00]
and [TLHD03] for details. Finally, we can store the regional

(volume weighted) mean values of these quantities in the
vector proxy for use in partitioning, the errors being defined
in a similar fashion to that ofEL2 in Equation2. Note that
these zeroth and first order metrics for vector comparison
in 2D and 3D are a useful extension to the metric defined
in [DW04]: not only do they allow physically-relevant clus-
tering, but they also permit higher-order clustering. Cluster-
ing together vectors with similar curl components to natu-
rally detect vorticies and eddies is possible, as is comparing
divergence which allows us to point out sources and sinks.
Figure3 illustrates how a single dataset may look through
these different metrics. The potential for any variety of other
metrics exist, where necessary.

2.4. K-Means Algorithm for Discrete Vectors
Distortion-driven Flooding The procedure to build a k-
partition—connected and non-overlappingk regions—of
our input mesh is straightforwardly achieved through a
rapid flooding process that makes locally optimal decisions
in an attempt to reduce our global distortion, as defined
in [CSAD04]. To bootstrap the process, we pickk random
seed elements in our mesh and for each; we assign a vec-
tor proxy defined by this seed’s vector data. Then, for each
seed, we add its neighbors to a priority queue, where prior-
ity is given to neighbors that have the lowest distortion with
respect to the seed’s proxy. As we remove elements from
the queue, we assign that element to its vector proxy of low
distortion and then continue by adding its neighbors to the
queue in a recursive fashion until all elements have been as-
signed to a region.

Optimizing the Partition The K-means algorithm (or
more precisely, the Lloyd’s clustering algorithm) can thenbe
applied—a deterministic and fixed point iteration that pro-
vides near-optimal clustering for a surface we wish to split
into k regions. Conceptually, the idea is simple: after defin-
ing k random centers, all the data points on the surface are
partitioned intok regions by assigning each point to its near-
est center. Then, the algorithm updates the centers to be the
centroids of their associated regions before starting a new
partition with these new centers. This process is repeated un-
til a stopping criterion is met. It is easy to understand how
this generalized framework can be applied to our distortion
minimization problem: in this setting, the centers correspond
to our vector proxies and the surface we wish to partition cor-
responds with our mesh. Once our mesh has been partitioned
through the flooding mechanism, we update our vector prox-
ies by taking the new “average” in the associated region, and
repeat these two steps until our partition converges, see Fig-
ure 6. It can be proven [CSAD04] that such an algorithm
aims at minimizing our global distortion errorE - the flood-
ing stage minimizesE for a fixed set of vector proxies while
the proxy fitting stage minimizesE for a fixed set of regions.

Possible ExtensionsThe basic technique presented in this
paper is simple to extend in various ways. First, repeated,
subclustering can be performed to provide a versatile, hier-
archical clustering of arbitrary fields. Second, the metriccan
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Figure 5:Pipeline for visualizing a cylinder dataset during impact under non-slip conditions, 100k tetrahedra. Left: Variational
segmentation into 200 regions. Middle-Left: Exploded viewof the cluster volumes. Middle-Right: Streamlines initiated from
the centroid of each cluster, terminated at the region boundary. Right: Thinning tubes drawn through the entire domain while
adhering to a distance threshold. We use orthogonal shadowsprojected on the base planes for added 3D cues.

(a) Vector Field (b) Initial flooding (c) 1st iteration (d) 10th iteration

Figure 6:Lloyd’s algorithm is applied to quickly drive down
the distortion error. Through iterative partitioning and proxy
fitting, the clustering converges in just a few steps.

be easily altered: one especially useful metric for visualiza-
tion is a weighted combination between the gradient tensor
metric and a spatial position metric. But more physically-
driven metric choices can also be made.

3. Results and Discussion

We have tested our variational segmentation technique ex-
tensively on vector fields varying from analytic, coarse grid
test cases to large, noisy flow fields with tens of thousands of
sample points on irregular grids. In all cases we obtain very
natural segmentations, especially when incorporating proxy
teleportation [CSAD04] to eject proxies from sub-optimal
local minima. Applying the variational mechanism to dif-
ferent metrics allows us to extract new and insightful per-
spectives from any flow field—Figures5 and8, 9 show this
machinery in action.

The framework presented here gives us much space for
further exploration and developments. A significant draw-
back to discuss is our present inability to extract a meaning-
ful visualization from our segmentation. In other words, now
that we have simplified the field intok regions, how can we
present this data in a constructive manner that will generate
a greater understanding of the underlying flow for scientific
researchers?

The naïve approach of showing a hedgehog per region is

both cluttered and unintuitive. Previous work on clustering
has relied on slightly more advanced representations such
as curved arrows, analogous to shaded streamlines with an
icon at the front of the curve to represent flow directional-
ity. But arrowheads specifically, are extremely strong visual
elements, which garner focus away from the more subtly
curved streamlines. This is a very undesirable side effect be-
cause the curve is where most of the information about the
movement of the flow is presented. Conversely, streamlines
alone (without an arrowhead) fail to indicate the direction
of the flow, which is rather important when predicting parti-
cle movement, as well as to distinguish between singularities
such as sources and sinks.

3.1. Visualization through Streamlines
As suggested by Figure3(c), the first-order gradient tensor
metric provides an elegant mechanism to home-in on singu-
larities and active areas in the data, therefore serving as an
excellent foundation for visualization purposes. One possi-
ble strategy for this (similar to [JL97]) is presented below:

Having obtained the representative clusters, we use these
for the placement of streamlines. For each region in the par-
tition, we initiate a streamline from the barycenter of the
cluster and integrate backwards and forwards over the en-
tire vector field using a standard Runge-Kutta scheme. To
ensure an attractive distribution of streamlines for the vi-
sualization, a Euclidean distance thresholdt is introduced.
We trace the streamlines in ascending order of the associ-
ated cluster’s volume, and if at any time this trace comes
sufficiently close to anything that has previously been drawn
(within distancet), the streamline trace is terminated and we
proceed to the next seed.

3.2. Thinning Tubes
For an elegant display of the resultant streamlines, we intro-
duce the use of thinning tubes—generalizing from [JL97]
and [TB96]. Thinning tubes are tubes of finite volume,
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Figure 7:The effects of an increasing streamline distance threshold.

whereby the radius of the tube’s circular cross section lin-
early increases in the direction of the vector field. The ad-
vantage of thinning tubes over regular streamlines or flow
ribbons is that the varying girth indicates the direction of
flow; and does so in an unobtrusive manner that doesn’t de-
tract visual focus from the subtle paths of the flow. More-
over, as 3D objects, thinning tubes render well under basic
specularity supporting light models, thus increasing the 3D
information—3D cues—presented to the researcher.

Given a streamlines of length l , for any point ons that
has a distanced along the curve to the front of the stream-
line, we compute the radiusr(d) of the thinning tube’s cross
section at that point to ber(d) = k∗ ((l −d)/l)). The front
of the thinning tube will therefore have a radiusk, and in our
implementationk is also directly correlated with the length
of the streamline. This helps to achieve a visual balance that
emphasizes longer streamlines.

Note that thinning tubes have the potential for many vari-
ations. We can further manipulate them to resemble artistic
brushstrokes, or to supply additional information - in partic-
ular we could indicate the magnitude of the vector field by
varying the girth of the tube, or varying its color as it inte-
grates the field.

3.3. Conclusion and Future Work

Considering the generalized framework of Lloyd’s algorithm
and its ease of implementation, our method quickly paves
the road for numerous enhancements. In particular, consider
a vector field that isnot static, but varies over time. Extend-
ing our notion of a vector proxy, a 4D approximation (3D
+ time) using a space-time metric can be constructed to ef-
fectively make the best of both spatial and temporal compo-
nents: variational motion segmentation could reveal itself a
powerful visualization tool.
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