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In Section 1, we provide a proof of Theorem 1 from our
ICCV paper and discuss how our VoroLoss can be imple-
mented efficiently using a k-nearest-neighbors algorithm.
We then present a detailed analysis of the chamfer distances
obtained with our model trained on the ABC dataset in Sec-
tion 2, before demonstrating additional qualitative compar-
isons for both optimization-based and learning-based re-
sults in Section 3. Section 4 discusses how to improve the
outputs of VoroMesh, while a comparison of our approach
to DMT [7] is presented in Section 5. Finally, additional
timings of our experiments are provided in Section 6.

1. Additional comments about VoroLoss

(a) Closest face (b) Closest bisector

Figure 1: Visual proof of our VoroLoss: given a point (red)
of the target surface, the distance to the closest face in the
Voronoi diagram (a) is equal to the distance to the closest
bisector between the generator (green, in which the sampled
point lies) and all the other ones (b).

Proof of Theorem 1. To validate our Voroloss, we need to
prove that the distance from a point z € R? to the set of cell
faces of the Voronoi diagram of the generators equates the
distance from x to the bisector planes between the generator
q; of the Voronoi cell containing = and the other generators
qj-;- Note that the Voronoi cell V; of a generator ¢; is the
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intersection of half-spaces containing ¢; [!] (see Figure 1),
ie., Vi=NjpH ; where Hj ; ={y € R®||ly — q:|| < [ly —
¢;||} denotes the half-space of points closer to g; than g;,
where the boundary O H ; of H} ; is the bisector plane H;
between g; and g;. Therefore, each Voronoi cell is convex,
implying the property we stated since:

d(z,0V;) = d(z,U; 2 H; ;) = m;n d(z, H; j).
J#i
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(a) #neighbors per Voronoi cell  (b) Index of closest bisector

Figure 2: Statistics for a random 3D Voronoi diagram.

VoroLoss implementation details. Our VoroLoss can be
efficiently computed using a k-nearest-neighbors algorithm.
In this experiment, we consider the Voronoi diagram of 10°
points placed randomly in [—1,1]3. Let i be the index of
the closest generator for a point x of the dense sampling.
The average number of faces for each Voronoi cell (which
also corresponds to the degree of each vertex in the dual
(Delaunay) triangulation) can be large, see Figure 2a. How-
ever, when sorting the generators by distance to the sampled
point, the j-th index of the generator for which d(x, H; ;) is
minimal is low, see Figure 2b. Note that we include an im-
plementation of VoroLoss (with the complete architectures
of our networks) in the file voromesh . py of our supple-
mental material.

2. Quantitative Analysis

In order to complement our ICCV ’23 paper, we provide
histograms of chamfer distance (in logarithmic values to ex-
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Figure 3: Histogram of Chamfer distance log values for VoroMesh, NMC [3], and NDC [2] for SDF inputs of resolution 323.
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Figure 4: Histogram of Chamfer distance log values for VoroMesh, NMC [3], and NDC [2] for SDF inputs of resolution 643,

acerbate differences) obtained on the ABC dataset with our
VoroMesh for input SDF grids of resolutions 323 and 643,
and compare it to the state of the art in Figures 3-4.

Generally, VoroMesh produces slightly fewer low-CD
reconstructions compared to NMC [3] and NDC [2], but
it also produces significantly fewer failed reconstructions
(i.e., with outlier high-CD values), which allows our
method to achieve better aggregate metric values. Our ap-
proach is most effective at low resolution, where the pre-
vious observation is most obvious; additionally, VoroMesh
produces significantly more reconstructions in the average
quality range. For higher resolution, VoroMesh remains
competitive, showing that our loss can be effectively used
to produce training signal for detailed high-quality recon-
structions. For a grid size 642, VoroMesh still outperforms
competitors in aggregate CD values due to its ability to rep-
resent finer shapes with adaptive surface discretization and,
as a result, its lack of failed reconstructions.

3. Qualitative Analysis

Finally, we present additional renders of the models pre-
sented in the articles for all resolutions. We also showcase
the different methods on additional models.

The optimization-based results are presented in Figures
8,9, 10, 11, and 12. Our representation is accurate and
efficiently captures small details, visually outperforming all
methods.

The learning-based results on the test set of ABC are pre-

sented in Figures 13, 14, and 15, while Thingi32 shapes are
in Figures 16, 17. Our approach captures thin structures, but
sometimes fails to correctly predict the occupancy of some
cells, resulting in shadowed voids.

Note finally that the small faces visible on close inspec-
tion could be eliminated in a post-processing stage as men-
tioned as future work in the paper and discussed in the next
section — see also Figures 5a-5b.

(a) Voromesh

(b) Simplified dual Voromesh

Figure 5: A possible approach to eliminating artifacts
caused by small facets (a) is to dualize the Voromesh, and
collapse small edges (b).

4. Surface Artifacts

Voronoi generators in near co-circular positions can cre-
ate small facets (visible in Figure 5a) which can cause shad-



ing artifacts. Removing them would improve visual qual-
ity and performance in F1 and NC metrics. In this paper,
we favored strong topological guarantees over appearance;
nonetheless, we explored ways to improve our reconstruc-
tions through postprocessing. One possibility is to leverage
the fact that the surface dual to our VoroMesh is a trian-
gle mesh, which can be simplified through edge collapses
to yield an artifact-free surface with better shaped triangles
(see Figure 5b), potentially at the expense of some details.
Alternatively, our method is capable of very fine reconstruc-
tions where artifacts simply become invisible, see Figure 6.

Figure 6: Direct optimization on a 2562 grid.

5. Comparison to Deep Marching Tetrahedra

For completeness, we provide additional analysis and
comparison of our approach to Deep Marching Tetrahe-

(a) DMT

(b) DMT-d1

(c) DMT-d2

Figure 7: Visual comparison between DMT (tetrahedra grid
of size 128%) and our method (grid of size 64%). Left to
right: vanilla DMT version, DMT with direct optimisation,
DMT with direct optimisation and ground-truth SDF initial-
ization, and VoroMesh.

(d) Ours

Method CD F1 NC
DMT (128-d2) | 0.712 | 0.926 | 0.962
VoroMesh (64) | 0.645 | 0.938 | 0.975

Table 1: Quantitative comparisons for an optimization-
based 3D reconstruction task on the Thingi32 dataset.

dra [7] (DMT). Several critical differences exist between
DMT and our Voromesh:

* the output connectivity of DMT meshes is fixed by the
template, while ours is flexible and determined by con-
struction of a corresponding Voronoi diagram;

¢ the representation of DMT is hybrid as a MLP is nec-
essary to model a continuous implicit field of SDF and
displacements, whereas our VoroMesh can be used di-
rectly without neural networks.

* DMT does not provide strong topological guarantees,
namely the absence of self-intersections.

In the absence of an official implementation from the
DMT paper, we rely on a tutorial code from a separate
NVIDIA library', which overfits a single MLP to a given
shape — a setting similar to our direct optimisation exper-
iment. It relies on a tetrahedra grid of size 128, which has
roughly the same number of vertices as a voxel grid of res-
olution 65 (we used 64 in our experiment). Using it out-
of-the-box yields poor results, see Figure 7a. We believe
it can be attributed to the underlying hybrid model; more
precisely, to the inability of the MLP to represent high-
frequency details as explained in [8]. We also tried to op-
timize the tetrahedra vertices displacement and signed dis-
tance predictions directly; because the parameters are now
independent and no longer predicted by an MLP, the initial
unit sphere fitting leads to worse results, see Figure 7b: the

IDMT tutorial.


https://github.com/NVIDIAGameWorks/kaolin/blob/master/examples/tutorial/dmtet_tutorial.ipynb

loss function is unable to optimize the tetrahedra situated far
from the target surface. To alleviate this problem, we fur-
ther help DMT by initializing the displacements to zero and
the predicted signed distance to the ground-truth SDF with
respect to the original surface; but resulting reconstructions
still lack surface smoothness and finer details and are out-
performed by our VoroMesh representation, see Figure 7c
and Table 1.

6. Additional timings

We now provide timings for optimization-based and
learning-based experiments. Our mesh extraction, which
relies on CGAL, is very fast (Table 2), while our infer-
ence time for the learning-based experiment is comparable
to state-of-the-art methods (Table 3).

Grid Size | Mesh Extraction (s) || Full Execution (s)
32 0.03 5.0
64 0.11 10.2
128 0.46 57.3

Table 2: Mean timings on the Thingi32 dataset for
optimization-based 3D reconstruction. Full execution tim-
ings include mesh extraction.

Method Grid Size | Mean Inference (s)
NDC [2] 32 0.05
NMC [3] 32 0.18
Ours 32 0.19
NDC [2] 64 0.12
NMC [3] 64 0.97
Ours 64 0.63

Table 3: Mean timings on the ABC test set for learning-
based 3D reconstruction.



Figure 8: VoronoiNet [9] (top row), our method (middle row) and target shape (bottom row) for a grid of size 323



(a) MC [5] (b) DC [4] (c) SAP [0] (d) Ours (e) Ground Truth

Figure 9: Visual comparison of optimization-based methods for grids of size 323 (top row), 64% (middle row), and 1283
(bottom row)
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(a) MC [5] (b) DC [4] (c) SAP [0] (d) Ours (e) Ground Truth

Figure 10: Visual comparison of optimization-based methods for grids of size 323 (top row), 643 (middle row), and 1283
(bottom row)
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(a) MC [5] (b) DC [4] (c) SAP [0] (d) Ours (e) Ground Truth

Figure 11: Visual comparison of optimization-based methods for grids of size 323 (top row), 643 (middle row), and 1283
(bottom row)
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(a) MC [5] (b) DC [4] (c) SAP [0] (d) Ours (e) Ground Truth

Figure 12: Visual comparison of optimization-based methods for grids of size 323 (top row), 643 (middle row), and 1283
(bottom row)



(a) NMC [3] (b) NDC [2] (c) Ours (d) Ground Truth

Figure 13: Visual comparison of learning-based methods for grids of size 322 (top row), 64° (bottom row)
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(a) NMC [3] (b) NDC [2] (c) Ours (d) Ground Truth

Figure 14: Visual comparison of learning-based methods for grids of size 322 (top row), 64° (bottom row)
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(a) NMC [3] (b) NDC [2] (c) Ours (d) Ground Truth

Figure 15: Visual comparison of learning-based methods for grids of size 322 (top row), 642 (bottom row)



(a) NMC [3] (b) NDC [2] (c) Ours (d) Ground Truth

Figure 16: Visual comparison of learning-based methods for grids of size 323 (top row), 643 (middle row), and 1283 (bottom
row)
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(a) NMC [3] (b) NDC [2] (c) Ours (d) Ground Truth

Figure 17: Visual comparison of learning-based methods for grids of size 323 (top row), 643 (middle row), and 1283 (bottom
row)
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