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1 DERIVATION OF ENTROPY OPTIMIZATION ON

CUMULANTS

As described in our main paper, the entropy function in LBM is

typically defined as

𝐻 (𝒇 ) = −
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𝑖

𝑓𝑖𝑙𝑛

(

𝑓𝑖

𝜔𝑖

)

, (1)

where 𝜔𝑖 is the weight of the corresponding discretized velocity 𝒄𝑖 .

We follow the work of [Krämer et al. 2019] and adopt a quadratic

approximation of the entropy function:
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, (2)

which is referred to as the pseudoentropy function. This function is

a Taylor expansion of 𝐻 (𝒇 ) from Eq. (1) at the global equilibrium

𝑓
eq
𝑖 (𝜌 = 1, u = 0) = 𝜔𝑖 . The advantage of using a pseudoentropy

function is that it provides a simple and explicit concave function

to maximize. While [Krämer et al. 2019] provides a derivation to

maximize pseudoentropy function for MRT, the assumption is made

that the moment transformation must be linear, which is not the

case for the cumulant collision operator: a cumulant transforma-

tion is nonlinear for cumulants of order 𝑛 ≥ 4. So here we derive

pseudoentropy maximization for our cumulant collision model.

We set 𝒌𝒍 = {𝑘𝑙 , 𝑙 ∈L} as the cumulants up to order 3, since their

relaxation rates are either fixed or optimized as in [Geier et al. 2017].

We can then define the rest of the cumulants, which are of orders 4

to 6, as 𝒌 = {𝑘ℎ, ℎ ∈H}. The pseudoentropy maximization can then

be formulated as

𝒇 ∗ = argmax
𝒌

�̃� (𝒇 ). (3)

The difference between a central moment𝑚𝑖 and a cumulant 𝑘𝑖 is

denoted as 𝑟𝑖 :

𝑟𝑖 =𝑚𝑖 − 𝑘𝑖 . (4)
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Then we can formulate 𝑓𝑖 as

𝑓𝑖 =
∑︁

𝑙∈L

𝑡𝑖𝑙𝑚𝑙 +
∑︁

ℎ∈H

𝑡𝑖ℎ𝑚ℎ (5)

=

∑︁

𝑙∈L

𝑡𝑖𝑙 (𝑘𝑙 + 𝑟𝑙 ) +
∑︁

ℎ∈H

𝑡𝑖ℎ (𝑘ℎ + 𝑟ℎ) . (6)

with 𝑻 = 𝑡𝑖 𝑗 is the transformation matrix from central moments to

distributions as 𝒇 =𝑻𝒎. Since cumulants and central moments are

equal up to third order, one has 𝑟𝑙 = 0, 𝑙 ∈L, yielding:

𝑓𝑖 =
∑︁

𝑙∈L

𝑡𝑖𝑙𝑘𝑙 +
∑︁

ℎ∈H

𝑡𝑖ℎ (𝑘ℎ + 𝑟ℎ) . (7)

For Eq. (3), we can obtain 𝑘ℎ by solving

𝜕�̃� (𝒇 )

𝜕𝑘ℎ
= 0, ℎ ∈ H . (8)

The left-hand side of Eq. (8) can be evaluated as

𝜕�̃� (𝒇 )
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Then with Eq. (7), we can rewrite Eq. (8) as
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Now, if we denote 𝒓 = {𝑟ℎ, ℎ ∈ H}, an important observation is

that there exists a constant matrix 𝑳 in closed form and a vector 𝒏

depending only on the known low-order cumulants such that

𝒓 = 𝑳 𝒌 + 𝒏 . (11)

We split the matrix 𝑻 = [𝑻𝑙 ;𝑻ℎ], and define 𝑫 = [
𝜕𝑓𝑖
𝜕𝑘ℎ

] = 𝑻ℎ (𝑰 + 𝑳).

Written in matrix form using 𝑰 as the identity matrix and𝑾 as the

diagonal matrix containing the lattice weights 𝜔𝑖 , Eq. (10) becomes:

𝑫𝑇𝑾−1𝑻ℎ ((𝑰 + 𝑳)𝒌 + 𝒏) = −𝑫𝑇𝑾−1𝑻𝑙𝒌𝑙 , (12)

which leads to

(𝑰 + 𝑳)𝒌 = −(𝑫𝑇𝑾−1𝑻h)
−1𝑫𝑇𝑾−1𝑻l𝒌l − 𝒏 . (13)

2 NUMERICAL TESTS OF GRID CONVERGENCE

2.1 Taylor-Couette flow

We perform a 2D Taylor-Couette flow test to assess the convergence

of our boundary treatment. The flow is generated between two

concentric rotating circles that have different radii and angular

velocities, which is sketched in Fig. 1. In our case, we set 𝑟1 = 0.5,

𝑟2 = 1.0 and Ω1 = 1.0, Ω2 = −1.0. The Reynolds number 𝑅𝑒 =
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|Ω2 |𝑟
2
2/𝜈 is set to 10, where 𝜈 is the kinematic viscosity. In the case

of a laminar flow, there is an analytical solution for the velocity

between the two circles: for a node (𝑥,𝑦) located between the circles,

with 𝑟 =
√︁

𝑥2 + 𝑦2 for 𝑟 ∈ [𝑟1, 𝑟2], the solution 𝒖ref is

𝑢ref𝑥 = −
(

𝐴 + 𝐵/𝑟2
)

𝑦, 𝑢ref𝑦 =

(

𝐴 + 𝐵/𝑟2
)

𝑥, (14)

where 𝐴 and 𝐵 are constants defined as

𝐴 =

Ω2𝑟
2
2 − Ω1𝑟

2
1

𝑟22 − 𝑟21
, 𝐵 =

(Ω1 − Ω2)𝑟
2
1𝑟

2
2

𝑟22 − 𝑟21
. (15)

We then measure the error using relative 𝐿2- and 𝐿∞-norm errors

defined respectively as

𝐸𝐿2 =

√

√

∑

𝑖 ∥𝒖 (𝒙𝑖 ) − 𝒖ref (𝒙𝑖 )∥
2
2

∑

𝑖 ∥𝒖
ref (𝒙𝑖 )∥

2
2

, (16)

𝐸𝐿∞ =

max𝑖 ∥𝒖 (𝒙𝑖 ) − 𝒖ref (𝒙𝑖 )∥2

max𝑖 ∥𝒖ref (𝒙𝑖 )∥2
, (17)

where 𝒖 (𝒙𝑖 ) is the simulated velocity at lattice node 𝒙𝑖 . The relative

𝐿2- and 𝐿∞-norm errors of our solver for the Taylor Couette flow

are plotted in Fig. 2, demonstrating that the error decreases as the

grid is refined with an approximately first-order convergence rate.

Fig. 1. 2D Taylor-Couette flow. The flow is generated by two concentric

circle boundaries with radii 𝑟1, 𝑟2 and angular velocities Ω1, Ω2, respectively.

Figure courtesy of [Lyu et al. 2021].

Fig. 2. Grid convergence of Taylor-Couette flow. We show the conver-

gence of (a) relative 𝐿2 and (b) relative 𝐿∞ errors of our method.

2.2 Flow over sphere

Despite our conclusive convergence test above, one could argue that

the convergence behavior of a boundary treatment scheme for a low

Reynolds number flow simulation is not necessarily representative

of the results for a high Reynolds number flow simulation. So we

now test the accuracy of 𝐶d evaluations for high Reynolds number

flows over a sphere, and will show that second-order convergence

is obtained, demonstrating that our boundary treatment method is

better suited for high Reynolds number simulations. We test the

convergence of our method under grid refinement in the case of the

drag crisis again, for a flow passing over a sphere at Re=400,000 as

discussed in the main paper. We use four different grid resolutions

as listed in Tab. 1. The diameter of the sphere is 𝐷 =1.6𝑚 and the

domain size is 17.6𝑚 × 17.6𝑚 × 17.6𝑚 for all grid resolutions. A

convergence plot of drag coefficients as a function of 𝑁 −2/3 (where

𝑁 is the total number of nodes for a given grid) is shown in Fig. 3.

The plot indicates that the results computed by our method vary

monotonically with grid refinement. The plot is almost linear over

the three finest grids, showing a second-order convergence with

respect to 𝑁 . We can also see that for the coarsest grid, the drag

coefficient is not decreased as expected at the drag crisis: the flow is

too under-resolved in this case to capture this crisis phenomenon.

Table 1. Test of four grids.

No. Δ𝑥 Node count 𝑁 𝑁 −2/3 × 10−6

1 𝐷/320 42,720,181 8.18

2 𝐷/384 71,695,197 5.79

3 𝐷/448 108,587,682 4.39

4 𝐷/512 125,631,687 3.99

Fig. 3. Drag estimates𝐶d for flow around sphere at Re = 400,000.
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