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Fig. 1. Aerodynamics of an F1 racing car. In this paper, we construct a virtual subsonic weakly-compressible wind tunnel testing facility for the simulation

of fluid flows around 3D models with which accurate physical quantity prediction (such as surface forces and drag coefficient) as well as precise flow field and

surface pressure visualizations can be readily obtained. Here, the mean pressure field (𝐶p) is shown on the car body surface, while passively-advected dyed

particles from two front sources show the wake flow behind the rotating wheels and the car body. Five-level multiresolution grids are used to capture an

effective resolution of 4mm on the body of an F1 racing car measuring 4.15 meters. With our optimized GPU implementation, a 2-second simulation of such a

complex model takes less than one hour to compute, with an accuracy meeting current industrial standards for automotive aerodynamics.

Virtual wind tunnel testing is a key ingredient in the engineering design

process for the automotive and aeronautical industries as well as for urban

planning: through visualization and analysis of the simulation data, it helps

optimize lift and drag coefficients, increase peak speed, detect high pressure

zones, and reduce wind noise at low cost prior to manufacturing. In this

paper, we develop an efficient and accurate virtual wind tunnel system based

on recent contributions from both computer graphics and computational

fluid dynamics in high-performance kinetic solvers. Running on one or mul-

tiple GPUs, our massively-parallel lattice Boltzmann model meets industry
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standards for accuracy and consistency while exceeding current mainstream

industrial solutions in terms of efficiency Ð especially for unsteady turbulent

flow simulation at very high Reynolds number (on the order of 107) Ð due to

key contributions in improved collision modeling and boundary treatment,

automatic construction of multiresolution grids for complex models, as well

as performance optimization. We demonstrate the efficacy and reliability of

our virtual wind tunnel testing facility through comparisons of our results

to multiple benchmark tests, showing an increase in both accuracy and effi-

ciency compared to state-of-the-art industrial solutions. We also illustrate

the fine turbulence structures that our system can capture, indicating the

relevance of our solver for both VFX and industrial product design.
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1 INTRODUCTION

Nowadays, we expect cars to be sleek, streamlined and aerodynamic.
Yet, early automotive models like the Ford Model T were quite
boxy. It was only after aeronautical engineers started to use wind
tunnels to test aircrafts (often with scale-models) that the idea of
aerodynamics began to gain popularity among automotive designers
in the early twentieth century. Since then, wind tunnel testing has
streamlined car and airplane design for decades, helping to lower
energy consumption as speed has become an increasingly important
factor Ð leading at times to sale slogans like łshaped by the windž for
the 1955 Chrysler Ghia Gilda. Even prototypes of high-rise buildings,
electricity transmission towers, or long-span bridges are often tested
in wind tunnels early in their design to evaluate the aerodynamic
loadings to be borne by their structural frames.

Advent of virtual wind tunnels. Due to their high costs and limited
ability to provide a fine analysis of the airflow, real-life wind tunnel
experiments on physical prototypes have quickly given way in the
digital era to full-scale virtual aerodynamic testing Ð an easy, fast,
and cost-effective solution to the design of products without the
need for physical prototyping. When designing a new car, plane,
or tall building, manufacturers now increasingly rely on numeri-
cal simulation before the initial model is constructed in order to
predict the airflow around the model: identifying the regions of
high pressure or strong shear offers detailed insights that save time
and money in the design cycle. As a consequence, design iterations
have been notably shortened by the introduction of virtual wind
tunnels. Today, the wall-clock efficacy of a full-scale simulation
can still deeply impact the time to market of a new automotive,
architectural, or aeronautical model by accelerating the inevitable
łtest, refine, iteratež process [Irwin et al. 2013; Solari 2019].

Current virtual wind-tunnel testing. For the most common sub-
sonic weakly compressible case (for Mach numbers smaller than
0.3 where fluid incompressibility remains a good approximation),
current virtual wind tunnels require a time-consuming preprocess-
ing stage: a body-fitted mesh of the model to test must be con-
structed, often involving a lot of manual intervention to guarantee
high-quality mesh elements. Then a finite-volume or finite-element
Computational Fluid Dynamics (CFD) solver for the incompressible
Navier-Stokes equations is used to evaluate aerodynamic quantities
such as lift/drag coefficients and pressure distributions over the
model surface. Simulation time is often in the order of hours per
time step to ensure accuracy on CPU even if large compute clusters
are used (especially on unstructured meshes where global solves
are particularly inefficient) for the Reynolds numbers needed for
realistic conditions (𝑅𝑒 ∼ 107 for cars, and near 108 for a landing
airplane). Even with recent GPU accelerations, existing software
packages like Siemens’ StarCCM+ [Siemens PLM Software 2023]
are still mostly used for steady flow simulation, as the case of time-
dependent unsteady flow with turbulence is out of practical reach.

Upending aerodynamics with LBM. In recent years, improvements
in lattice Boltzmann methods (LBM) for efficient turbulent flow
simulation have been considerable. Their recent progress on colli-
sion models along with their ability to explicitly and locally solving
the Boltzmann transport equation on massively parallel architec-
tures [Li et al. 2020; Lallemand et al. 2021] have now started to

upend traditional CFD solvers (of note, industrial software suites
like PowerFLOW and XFlow [Simulia Corp. 2023] are based on LBM,
but little is known in terms of the exact methods they implement) as
well as typical Computer Graphics (CG) approaches which cannot
handle Reynolds numbers above a few thousands, thus limiting
their realism. In terms of efficiency, GPU optimizations for LBM and
extensibility to multiple GPUs [Chen et al. 2022] have outclassed the
current state-of-the-art solvers for virtual wind tunnels; but recent
CG works [Li et al. 2020; Lyu et al. 2021] are still not close to meet
the demands Ð or rival the accuracy Ð of industrial applications.

Overview. In this paper, we argue that by addressing a few crucial
shortcomings of previous LBM works in CG, we can bridge the
gap between simulating fluids for visual effects and for real-world
industrial applications. We show that improving the collision model
in LBM and the boundary treatment near solid objects to enable
Reynolds numbers of up to tens of millions, incorporating mul-
tiresolution grids with proper grid transition to resolve boundary
layers more accurately, and further enhancing performance with
GPU optimizations result in a virtual subsonic weakly-compressible

wind tunnel testing facility that not only matches in accuracy and
outperforms in efficiency many existing commercial CFD packages,
but provides efficient and scalable high-resolution turbulent flow
simulations for cinematic productions. In order to validate our novel
LBM fluid solver, we present a series of validation tests, varying
from the drag coefficients of the flow around a sphere for a large
range of Reynolds numbers to the aerodynamic evaluation of stan-
dard car models of different shapes. We also assess our contribution
in terms of efficiency and accuracy by comparing to the state-of-
the-art methods and existing industrial solutions for the simulation
of unsteady, turbulent flows over complex models. Finally, a series
of visualizations are provided to illustrate the ability of our solver to
capture very fine turbulence structures Ð as seen for a flow around a
racing car in Fig. 1 visualized through dyed particles while coloring
of the car body indicates pressure distribution.

2 BACKGROUND AND RELATED WORK

We first review related work on general fluid simulation in both
CFD and CG, before discussing LBM and its recent advances that
will guide our design choices to build an accurate, yet efficient
virtual wind tunnel facility. Readers may check out recent review
papers such as [Lallemand et al. 2021] for a more in-depth look at
LBM-based simulation of nearly incompressible flows.

2.1 Navier-Stokes solvers

Classically, subsonic fluid flows at low Mach numbers are simulated
by solving the incompressible Navier-Stokes (NS) equations:

𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇𝒖 = − 1

𝜌0
∇𝑝 + 𝜈∇2𝒖 + 𝒈,

∇ · 𝒖 = 0,

(1)

where 𝒖, 𝜌0, 𝑝 and 𝒈 denote velocity, (constant) density, pressure
and external forces respectively, while 𝜈 is the kinematic viscosity.

NS solvers in CFD. Over the years, a variety of numerical ap-
proaches have been developed in Computational Fluid Dynamics to
solve the NS equations, covering finite difference [Strikwerda 2004;
Shukla et al. 2007], finite volume [Eymard et al. 2000; Jasak and
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Uroić 2020] and finite element [Zienkiewicz et al. 2013] methods.
The finite difference method is relatively simple due to a Cartesian
grid formulation, but cannot accurately deal with complex geome-
tries or preserve important physical quantities [Ferziger et al. 2002].
Finite volume methods, on the other hand, discretize space into an un-
structured mesh and leverage a conservative formulation, handling
complex geometries more accurately [Tu et al. 2018]. However, this
simulation accuracy requires stringent conditions on the quality
of the mesh, whose construction is therefore both time consum-
ing and labor intensive [Chawner and Taylor 2019], preventing
more challenging scenarios such as dynamic coupling [Lo 2014;
Zhang et al. 2020]. Finite element methods adopt a similar spatial
discretization (with similar requirements on the mesh) but with
a more versatile numerical formulation that can achieve higher-
order convergence; however, their implementation is reputedly not
straightforward [Zienkiewicz et al. 2013], and conservation is not
guaranteed compared to a finite volume approach.

NS solvers in graphics. While CFD methods are not focusing on
performance as they typically aim for accuracy, the Navier-Stokes
solvers proposed in computer graphics community usually sacri-
fice accuracy for much higher performance and better flexibility.
For instance, early work by Stam [1999] proposed a simple and
unconditionally-stable semi-Lagrangian advection; but the resulting
numerical dissipation did not allow strong turbulence. A series of
numerical schemes were introduced to counteract this flaw, such as
BFECC [Kim et al. 2005], unconditionally stable MacCormack [Selle
et al. 2008], advection-reflection solver [Zehnder et al. 2018] and
BiMocq2 [Qu et al. 2019], often at the price of adding numerical
dispersion for small timesteps instead. Vortex methods reformulate
the NS equations with vorticity [Park and Kim 2005; Selle et al. 2005]
and use vortex filaments [Angelidis and Neyret 2005;Weißmann and
Pinkall 2010] or vortex sheets [Pfaff et al. 2012; Zhang and Bridson
2014; Zhang et al. 2015], which naturally preserve more vortices in
the flow. While grid-based methods are more suitable for gaseous
phenomena, particle-based methods such as smoothed particle hy-
drodynamics (SPH) [Desbrun and Gascuel 1996; Müller et al. 2003;
Adams et al. 2007; Becker and Teschner 2007; Ihmsen et al. 2014b]
have also been proposed for liquid simulations. To better enforce
incompressibility, density-based [Solenthaler and Pajarola 2009; Ben-
der and Koschier 2015; Ihmsen et al. 2014a] or position-based [Mack-
lin and Müller 2013] corrections were derived to improve visual
complexity. Finally, hybrid methods leveraging the benefits of both
grid and particle-based approaches were developed [Harlow 1962;
Brackbill and Ruppel 1986; Foster and Metaxas 1996; Zhu and Brid-
son 2005], with later improvements in particle-grid transition [Jiang
et al. 2015; Fu et al. 2017] to enhance momentum preservation. More
recently, Fei et al. [2021] reduced numerical dissipation with a sep-
arable integration scheme, while Qu et al. [2022] proposed a new
particle-grid transfer kernel for enhanced particle distribution and
volume preservation.

2.2 Kinetic Boltzmann solvers

Whether it is in CFD or CG, Navier-Stokes equations are difficult to
simulate for unsteady turbulent flows because nonlinear advection
is involved, making it hard to have accurate conservative solutions.

Moreover, global linear solves are often required for incompressibil-
ity and/or stability, which slows down the whole simulation process,
even if GPUs are used [Chentanez and Müller 2014; Wu et al. 2018]
since fully exploiting parallelization for these solves is extremely
difficult. Kinetic solvers have recently upended this long-standing
issue by relying on the Boltzmann transport equation [Krüger et al.
2016] instead of the usual NS equations, typically written as

𝜕𝑓

𝜕𝑡
+ 𝒗 ·∇𝑓 + 𝑭 ·∇𝒗 𝑓 = Ω, (2)

where 𝑓 , shorthand for 𝑓 (𝒙, 𝒗, 𝑡), is the distribution function charac-
terizing the probability of fluid particles moving with microscopic
velocity 𝒗 at position 𝒙 and time 𝑡 ; 𝑭 is the external force density
such as gravity; and Ω is the collision operator that relaxes the distri-
bution function towards its local equilibrium, expressed to first order
as Ω=−(𝑓 − 𝑓 eq)/𝜏 (BGK form) where 𝜏 =3𝜈 + 1/2 is the relaxation
time determined by the kinematic viscosity 𝜈 [Dellar 2001]. By dis-
cretizing Eq. (2) via second-order space-time finite differences and
using Hermite polynomial expansion for the distribution function,
we obtain the lattice Boltzmann equations (LBE):

𝑓𝑖 (𝒙𝑘 + 𝒄𝑖 , 𝑡 + 1) − 𝑓𝑖 (𝒙𝑘 , 𝑡) = Ω𝑖 + 𝐹𝑖 , (3)

where 𝒙𝑘 is a grid node, 𝒄𝑖 is the discretized microscopic łlatticež
velocities, and 𝐹𝑖 is the external forcing term projected into lattice

space; Ω𝑖 , the discretized collision, can be as simple as −(𝑓𝑖 − 𝑓 eq𝑖 )/𝜏
for the lattice BGK collisionmodel [Chen andDoolen 1998]. Through
operator splitting, Eq. (3) can be rewritten as a streaming process
𝑓 ∗𝑖 (𝒙, 𝑡) = 𝑓𝑖 (𝒙 − 𝒄𝑖 , 𝑡) followed by a collision process and force
injection 𝑓𝑖 (𝒙, 𝑡+1)= 𝑓 ∗𝑖 +Ω𝑖 +𝐹𝑖 , leading to an update that is explicit
and localized, making it very suitable for high-efficiency GPU-based
parallel implementation. Typical macroscopic fluid quantities such
as density, velocity, or pressure can be recovered simply through
moments of the distribution functions at any time step:

𝜌 =

∑︁

𝑖

𝑓𝑖 , 𝜌𝒖 =

∑︁

𝑖

𝒄𝑖 𝑓𝑖 , 𝑝 = 𝑐2𝑠 𝜌, (4)

where 𝑐𝑠 = 1/
√
3 is the normalized speed of sound in lattice unit.

Note that in LBM, spatial and temporal steps are all normalized
to one, and the other quantities are scaled accordingly. The lattice
Boltzmann equations generate physical quantities that satisfy the
weakly-compressible Navier-Stokes equations [Nie et al. 2008].

Collision modeling. The simplistic lattice BGK collision model
is numerically very unstable due to significant truncation errors
for high Reynolds number flows (i.e., very small viscosity), which
led to a quest for improved collision treatments to enhance both
accuracy and stability of turbulent flow simulation with LBM using
a typical floating-point format (e.g., 32 bits). The multiple relax-
ation time (MRT) collision model [D’Humières 1992; Lallemand and
Luo 2000; D’Humières et al. 2002], on the other hand, performs
relaxation in moment space, which improves stability and accuracy
dramatically. While initially constructed with only raw moments
(and thus, violating Galilean invariance), the introduction of central
moments [Geier et al. 2006, 2009], Hermite moments [Shan and
Chen 2007; Chen et al. 2014; Adhikari and Succi 2008], central Her-
mite moments [Mattila et al. 2017; Shan 2019] and cumulants [Geier
et al. 2015, 2017a] have gradually removed this limitation. Other
collision approaches based on truncation of the Hermite polyno-
mial expansion, referred to as regularized collision models, were
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also proposed [Zhang et al. 2006; Lätt and Chopard 2006] to filter
out non-hydrodynamic spurious modes. This model was later im-
proved via a recursive formulation [Malaspinas 2015; Coreixas et al.
2017], as well as a hybrid recursive formulation [Jacob et al. 2018].
Another approach to improve collision modeling is to incorporate
dynamic relaxation rates, primarily by utilizing subgrid models of
large-eddy simulations (LES) [Eggels 1996; Sagaut 2010] or entropic
collision models [Karlin et al. 1999; Ansumali et al. 2003]. For LES
subgrid models, the Smagorinsky model was first used in LBM [Hou
et al. 1994; Krafczyk et al. 2003], and later extended to include dy-
namic parameter estimation [Premnath et al. 2009], a van Driest
damping function [Malaspinas and Sagaut 2014], or an improved
shear term [Lévêque et al. 2007], for more precise descriptions of
wall boundary flows. Besides models using eddy viscosity, there are
also models based on approximate deconvolution [Malaspinas and
Sagaut 2011; Nathen et al. 2018] or on the wall-adaptive large eddy
(WALE) model for LBM [Weickert et al. 2010]. Concurrently, en-
tropic collision models provide a useful constraint on the relaxation
times of high-order moments (inherently lacking physical interpre-
tation) by maximizing the local entropy as dictated by the second
law of thermodynamics. However, solving a constrained entropy
maximization numerically is expensive. Consequently, more effi-
cient methods have been developed based on the KBC model [Karlin
et al. 2014], pseudoentropy [Krämer et al. 2019] or using asymptotic
solutions from perturbation theory [Tang et al. 2022]. A last alter-
native to subgrid and entropic models is through optimization [Li
et al. 2020] with an offline regression of relaxation rates.

Streaming algorithms. A potential bottleneck in LBM simulation
is data dependency of the distribution functions, which hurts paral-
lelism. Typically, two sets of distribution functions are used to avoid
conflicts during streaming updates, but this simple fix is memory-
demanding. A series of streaming have been devised to only read
and write a single set of distribution functions, from the AA-Pattern
of Bailey et al. [2009], to Shift-and-Swap [Mohrhard et al. 2019],
Periodic-shift [Kummerländer et al. 2023], Esoteric Twist [Geier
and Schönherr 2017], and even Esoteric Pull and Push [Lehmann
2022] to further reduce peak memory bandwidth. While we do not
employ the most advanced LBM streaming algorithms in this paper,
the aforementioned methods could be combined with our method
to further improve efficiency.

Boundary treatment. Besides collision modeling, another impor-
tant topic in LBM is the treatment of boundaries [Marson 2022].
The most widely-used approaches to enforce no-slip conditions are
through either the bounce-back scheme [Ladd 1994; Bouzidi et al.
2001; Ginzburg and D’Humières 2003; Chun and Ladd 2007] or the
immersed boundary method (IBM) [Peskin 1972; Lu et al. 2012; Kang
and Hassan 2011; Patel and Natarajan 2018; Seo and Mittal 2011;
Chen et al. 2013]. The simple bounce-back (SBB) scheme is often pre-
ferred due to its simplicity of implementation, but its voxelized treat-
ment of boundaries makes it only first-order accurate in general. To
remedy this issue, a common approach (called interpolated bounce-
back or IBB [Bouzidi et al. 2001; Yu et al. 2003]) is to interpolate the
distribution functions according to the actual intersection between
a lattice link and the boundary. Ginzburg and d’Humières [2003]
achieved higher-order accuracy for curved boundaries through a

multi-reflection boundary treatment. A recent hybrid method com-
bining bounce-back and immersed boundary treatment also reduces
staircase artifacts using a boundary force correction [Lyu et al. 2021].
While these methods are effective for complex geometries, they of-
ten introduce non-local operations involving distribution functions
from more than one-hop neighboring nodes; this can create issues
for narrow gaps with no neighboring nodes, or for thin boundary
layers, requiring higher grid resolution and thus more memory.
This drawback can be avoided by defining an interpolated distribu-
tion function from the boundary velocity [Chun and Ladd 2007],
or through single-node schemes [Zhao and Yong 2017; Geier et al.
2015; Tao et al. 2018] and their generalizations [Zhao et al. 2019;
Chen et al. 2021; Marson et al. 2021].

Grid refinement. When accuracy and efficiency are of paramount
importance, grid refinement near object boundaries and wake flow
regions is inevitable to offer focused precision with minimal over-
head [Lagrava 2012]. Grid refinement methods in LBM can be cat-
egorized in two main families: node-based vs. cell-based methods.
Node-based methods, pioneered by [Filippova and Hänel 1998] and
later improved by [Dupuis and Chopard 2003], store all the com-
puted quantities (including distribution functions and macroscopic
values) on the corner nodes of the lattice cells of various resolutions
and allow fine-to-coarse transfers through rescaling. Spatial filtering
of distribution functions on fine grid nodes can also be applied to
obtain better distribution functions on coarser grids with reduced
discontinuity of macroscopic quantities [Lagrava et al. 2012], in-
creasing stability for flows with high Reynolds numbers. Cell-based
methods [Rohde et al. 2006; Chen et al. 2006] store all quantities at
the center of grid cells instead. This family of methods can achieve
conservation of mass and momentum without any rescaling of dis-
tribution functions [Schornbaum and Rüde 2016; Hasert et al. 2014;
Lätt et al. 2021]. To allow smoother transition across multiresolu-
tion grids, compact interpolation [Goraki Fard 2015], directional
splitting [Gendre et al. 2017] and direct coupling [Astoul et al. 2021]
have been proposed for applications requiring high accuracy such
as aeroacoustics. Nevertheless, all these grid refinement methods
typically enforce that each fine grid is a subdivision of a coarser grid,
reducing the flexibility with which grids of different resolutions are
positioned Ð except for [Li et al. 2019] whose continuous-scale
multi-block formulation relaxes the grid alignment constraints.

2.3 Requirements for industrial applications

Subsonic nearly-incompressible fluid flow solvers that are used to
reduce time to market for new automotive or aviation designs are
not significantly different from CG solvers producing big, realistic
fluid flow simulations in the VFX industry: they also strive for
efficiency first and foremost, and would rather not spend too much
preprocessing time onmesh cleaning, construction and tuning. They
mainly differ, however, on their accuracy requirements.

Efficiency. Wall-clock simulation time of fluid flows is crucial to
accelerate design cycles. Many commercial solvers are still executed
on CPU clusters, requiring a huge (and expensive) processing power
to accomplish a simulation in an acceptable time: it can take hours
to simulate one time step for an accurate NS solver, and several
days for a short time sequence, rendering unsteady flow simulation
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with turbulence impractical. Even if steady-state solutions are often
used instead, their accuracy largely depends on the choice of turbu-
lence models (such as the Reynolds-Averaged Navier-Stokes (RANS)
models [Alfonsi 2009] for simulations at high Reynolds numbers),
whose results deviate from the actual physical measurements for
what is intrinsically an unsteady flow Ð making the prediction of
physical quantities sometimes unreliable. Therefore, efficiency in
the simulation of unsteady flows running on small computational
devices to reliably guide design is an industrial must.

Preprocessing simplicity. Traditional solvers are mainly finite-
volume based, and thus, they require the construction of unstruc-
tured body-fitted meshes over the simulation domain before pro-
ceeding. This preprocessing requirement is typically very time con-
suming as it involves tedious manual mesh adjustment, often by
trial and error. This is another source of significant delays in the
iterative design of a new model: each time the shape is altered based
on the feedback obtained from its simulation test, another round
of preprocessing is required before the shape is computationally
evaluated again. It is thus important that meshes be automatically
constructed with as few, short manual interventions as possible, so
that preparation time for a simulation can be kept to a minimum.

Accuracy. Finally, a virtual wind tunnel should be predictive
enough so as to supersede an actual wind tunnel test when needed.
Besides identifying the regions of high pressure, strong shear, or
other fine details of the flow, a virtual simulation must be able to
evaluate common measures in industrial design to quantify key per-
formance characteristics Ð a famous example is the drag coefficient,
a dimensionless value (commonly denoted as 𝐶d and computed as
the ratio of the drag force to the force produced by the dynamic
pressure times the projected frontal area of the model) that quanti-
fies the air resistance of a shape, with a small coefficient indicating
that it will move more efficiently through air. An accepted range of
error for this drag coefficient prediction is within 5% (sometimes
even 3%) of an actual wind tunnel evaluation on a series of known
benchmarks including cars of various sizes and shapes. Given the
importance of boundary layers on the evaluation of forces on the
model for very high Reynolds numbers (typically in the order of 106

to 107), such an accuracy is out of reach for NS solvers in graphics,
even for recent CG works on LBM, e.g., [Li et al. 2020] and [Lyu et al.
2021] that use single-resolution grid, lower-order collision models,
and boundary treatments for efficiency: it calls for higher-order
LBMmodels with adaptive or multiresolution grids to capture down
to a few millimeters of geometric resolution to reach this level of
accuracy for prediction of relevant physical quantities.

2.4 Our contributions

In this paper, we construct a virtual subsonic weakly-compressible
wind tunnel testing facility which can be used for aerodynamic
design in automotive and aeronautical industries and for high-
resolution, realistic fluid flows for VFX. Given the requirements
we just discussed, we base our approach on the lattice Boltzmann
method as it allows for massively-parallel computational runs. Com-
pared to state-of-the-art LBM techniques proposed in both CFD and
CG, we contribute a number of improvements to enhance accuracy
and accelerate computations:

•we employ a cumulant-based collision model that we improve
through local entropy maximization to gain higher accuracy and
less force fluctuations; this new collision model can simulate
turbulent flows with very high Reynolds numbers of up to 108;

•we introduce a novel single-node interpolated bounce-back
scheme for static and dynamic boundary treatment which im-
proves boundary force evaluation;

•we propose an automatic and flexible multiresolution grid con-
struction with node propagation to enable both external and
internal flows over very complex prototypes, allowing high-
resolution, detailed flow simulations at low computational cost
while avoiding tedious mesh preprocessing;

•we also contribute various optimizations to speed up execu-
tion on both single and multiple GPUs, offering high-accuracy
predictions within hours, instead of days.

3 VIRTUAL WIND TUNNEL

We now delve into our contributions by providing a brief overview
of the literature we build upon, before detailing our changes to
ensure improvements in efficiency and accuracy. In order to keep
our exposition short and focused on our specific improvements, we
assume that the reader is aware of the traditional LBM pipeline,
i.e., solving the Boltzmann transport equations through operator
splitting by alternating streaming, boundary handling, and collision;
for a short overview, one may refer to [Li et al. 2020].

3.1 Entropy-based cumulant collision model

Existing LBM methods for turbulent flow simulation in graphics
rely on central moment collision models with adaptive high-order
relaxation rates [Li et al. 2020; Lyu et al. 2021]. These models are
appropriate for visual effects as they generate physically consistent
turbulence for many natural phenomena. However, it still lacks
sufficient accuracy for flows with very high Reynolds numbers
required in industrial applications. To remedy this limitation, we
employ a cumulant-based collision model that we further improve in
order to enable higher numerical precision and reliability. Cumu-
lant collision models fall into the category of multiple relaxation
time (MRT) collision models as reviewed in Sec. 2.2: they proceed
by transforming the distribution functions 𝑓𝑖 first into cumulant
(also called cumulative-moment) space, then perform collision by
relaxing each cumulant towards its equilibrium with an individual

rate, before finally transforming the post-collision results back into
new distribution functions.

Cumulants vs. central moments. Compared to recent kinetic solvers
in CG which are mostly based on the non-orthogonal central mo-
ment collision model, cumulants can be understood as intensive and
statistically-independent quantities while central moments are ex-
tensive and interdependent; e.g., the first-order moments correspond
to the macroscopic momentum 𝜌𝒖, while the first-order cumulants
correspond to the velocity 𝒖. Their independence (and Galilean
invariance) implies that the use of individual relaxation rates for
cumulants can further improve accuracy numerically [Geier et al.
2015]. More formally, cumulants are defined as partial derivatives
in frequency space of the logarithm of the Laplace transform of the
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distribution function, i.e.,

𝑘𝛼𝛽𝛾 =

𝜕𝛼 𝜕𝛽 𝜕𝛾

𝜕𝐾𝛼
𝑥 𝜕𝐾

𝛽
𝑦 𝜕𝐾

𝛾
𝑧

logL{𝑓 (𝒗)}(𝜁𝜁𝜁 )
�

�

�

�

𝜁𝑥=𝜁𝑦=𝜁𝑧=0

,

where 𝒗 is the microscopic particle velocity while 𝜁𝜁𝜁 = (𝜁𝑥 , 𝜁𝑦, 𝜁𝑧)
encodes frequency (wavenumber). A cumulant 𝑘𝛼𝛽𝛾 is said to be
of order 𝑛 if 𝛼+𝛽+𝛾 =𝑛. Note that cumulants are computed from
central moments in practice [Geier et al. 2015]. Once cumulants are
evaluated, cumulant-based collision modeling simply relaxes each
cumulant 𝑘𝛼𝛽𝛾 towards its Maxwellian equilibrium 𝑘

eq
𝛼𝛽𝛾

with its
own relaxation rate 𝑠𝛼𝛽𝛾 through:

𝑘∗
𝛼𝛽𝛾

= 𝑠𝛼𝛽𝛾 𝑘
eq
𝛼𝛽𝛾

+ (1 − 𝑠𝛼𝛽𝛾 ) 𝑘𝛼𝛽𝛾 . (5)

As in all MRT models, the relaxation rates of low-order cumulants
are determined by their physical interpretations so as to enforce
proper convergence to the Navier-Stokes equations: the zeroth-order
cumulants must use a zero rate to conserve density; the first-order
ones must be unit to preserve momentum, and the second-order
cumulants, corresponding to momentum fluxes, must be determined
by the kinematic viscosity of the fluid. While the third-order cumu-
lants can be assigned optimal rates based on Taylor series analysis
as proposed in [Geier et al. 2017a], rates for higher-order cumulants
are often set to an arbitrary constant (typically, 1) by lack of clear
guidance on how to optimize their values. Once all the relaxed rates
𝑘∗
𝛼𝛽𝛾

are computed as described, they are converted back to the
updated distribution functions to complete the whole collision. Due
to Galilean invariance and better statistical independence, cumulant-
based collision models often exhibit higher accuracy and stability
for flow simulation with strong turbulence [Geier et al. 2015].

Optimizing higher-order relaxation rates. While the cumulant
model described above can equal or outperform existing collision
models, optimizing higher-order rates is known to further improve
the accuracy of results, particularly for turbulent flow simulations:
Li et al. [2020] showed in the case of central-moment collision mod-
eling that adapting the rates based on local macroscopic quantities
of the fluid via regression greatly reduced numerical diffusion and
dispersion, enhancing simulation accuracy. Thus, one can also hope
to further enhance the cumulant-based collision accuracy through
an online optimization of the higher-order rates Ð although the
ad-hoc approach of [Li et al. 2020] did not help in our tests. However,

since the local equilibrium distribution functions 𝑓
eq
𝑖 are the maxi-

mizer (under the constraint of conserved density and momentum
density) of the entropy 𝐻 (𝑓𝑖 ) defined as

𝐻 (𝑓𝑖 ) = −
∑︁

𝑖

𝑓𝑖 log

(

𝑓𝑖

𝜔𝑖

)

, (6)

where 𝜔𝑖 is the lattice weight associated with each discretized dis-
tribution function, it seems reasonable to expect that optimizing
directly the higher-order rates for cumulants such that they max-
imize entropy is bound to further improve accuracy compared to
picking arbitrary rates: this is in fact precisely what Krämer et
al. [2019] successfully achieved in the case of central-moment colli-
sion modeling. We must, however, adapt their approach to the case
of cumulants: while they exploit the linear transform 𝑻 between cen-
tral moments 𝒎= {𝑚𝑖 }𝑖 and distribution functions 𝒇 = {𝑓𝑖 }𝑖 =𝑻𝒎,

this is no longer true for (non-linear) cumulants. To make the maxi-

mization easier, we use a concave, quadratic approximation �̃� of 𝐻 ,
called pseudo-entropy in [Krämer et al. 2019] and expressed as:

�̃� (𝒇 ) = −
∑︁

𝑖

(

𝑓 2𝑖
𝜔𝑖

− 𝑓𝑖

)

= 𝜌 −
∑︁

𝑖

𝑓 2𝑖
𝜔𝑖

. (7)

Given that cumulants are non-linear transformation of moments of
𝒇 , finding in closed form the higher-order relaxation rates that max-
imize this simpler entropy still seems impossible. However, a closer
inspection of the expressions linking cumulants 𝑘𝛼𝛽𝛾 and central
moments𝑚𝛼𝛽𝛾 given in [Geier et al. 2017a] reveals a key property
that we can exploit: for all orders 𝑝 ≤ 3, cumulants and central
moments exactly match (Eqs. (16)-(19) in [Geier et al. 2017a]), while
each higher-order cumulant is the sum of its corresponding central
moment and a linear combination of other high-order cumulants,
plus a non-linear function of low-order cumulants (Eqs. (20)-(23)
in [Geier et al. 2017a]). Since the relaxed cumulants up to order
2 are updated with physically-imposed relaxation rates to ensure
fluid density and momentum conservation and that the cumulants
of order 3 have known optimized relaxation rates as well [Geier
et al. 2017a], we can leverage the properties mentioned above to
find an analytical solution to the entropy maximization. Indeed, if
we denote by 𝑟𝛼𝛽𝛾 =𝑚𝛼𝛽𝛾 − 𝑘𝛼𝛽𝛾 the difference between a central
moment and its associated cumulant, and store all these differences
for orders higher than 3 into a vector 𝒓 , then there exists a constant
matrix 𝑳 known in closed form and a vector 𝒏 depending only on
the known low-order cumulants such that:

𝒓 = 𝑳 𝒌 + 𝒏 , (8)

where 𝒌 denotes the vector representing the cumulants of orders
higher than 3. Moreover, the condition of optimality

𝜕�̃� (𝒇 )
𝜕𝑘𝛼𝛽𝛾

= −
∑︁

𝑖

𝜕𝑓𝑖

𝜕𝑘𝛼𝛽𝛾

2𝑓𝑖

𝜔𝑖
= 0 ∀𝛼+𝛽+𝛾 ≥ 4 (9)

for the pseudo-entropy of Eq. (7) can then be written explicitly using
the matrices 𝑻 and 𝑳: if one expresses 𝑻 as 𝑻 = [𝑻l;𝑻h] where 𝑻l
represents the first ten columns of 𝑻 and 𝑻h represents the rest of
the columns, one then finds the optimal higher-order cumulants 𝒌
that maximize the pseudo-entropy given the vector 𝒌l of the first
ten (known) cumulants through:

(𝑰 + 𝑳)𝒌 = −(𝑫𝑇𝑾−1𝑻h)−1𝑫𝑇𝑾−1𝑻l𝒌l − 𝒏 , (10)

where 𝑰 is the identity matrix; 𝑫 =𝑻h (𝑰 + 𝑳) is the matrix of par-
tial derivatives of 𝒇 w.r.t higher-order cumulants 𝒌 , and𝑾 is the
diagonal matrix containing the lattice weights 𝜔𝑖 . Therefore, for
the typical D3Q27 lattice structure, finding the optimal high-order
cumulants 𝒌 consists in a simple linear solve which we compute
analytically for efficiency. To avoid numerical drift, cumulants are
clamped between equilibrium and pre-collision values. These final
cumulants are then turned back into distribution functions [Geier
et al. 2017a] to complete the collision process.

Comparison and analysis. In order to validate the resulting ac-
curacy of our collision model for turbulent flow simulation, we
conducted an experiment consisting in evaluating drag coefficients
𝐶d at high Reynolds numbers to show how the cumulant model
with our entropy-optimized higher-order relaxation rates behaves
compared to the existing cumulant model from [Geier et al. 2017a]

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



Building a Virtual Weakly-Compressible Wind Tunnel Testing Facility • 7

Fig. 2. Comparing drag for various cumulant models.We plot drag coefficient𝐶d over time for a sphere in a flow using the cumulant model of [Geier

et al. 2017a] (black) vs. our entropy-based cumulant model (red) for Re=100,000 (a), Re=400,000 (b) at which drag crisis happens, and Re=800,000 (c) indicating

better performance of our model as evidenced by faster convergence and smaller fluctuations Ð which both imply a more reliable mean drag estimation.

using optimized third-order relaxation rates only.We simulate a flow
passing around a sphere at a relatively low Reynolds number (Re
= 100, 000) and two relatively high Reynolds numbers (Re = 400, 000

and Re = 800, 000). The case at Re = 400, 000 is where drag crisis (also
known as łEiffel paradoxž) happens. It is well-documented that the
drag coefficient of a sphere will change rapidly from about 0.47 at Re
= 100, 000 down to around 0.1 at Re = 400, 000 when the Reynolds
number increases within the corresponding short range [Tiwari
et al. 2020]. This atypical regime is difficult for many numerical
solvers, and Geier et al. [2017b] recently offered the first LBM-based
numerical validation. We thus compared our result to theirs at the
different Reynolds numbers mentioned above and plotted the curve
of 𝐶d over time in Fig. 2, while we estimate the effective drag coef-
ficient 𝐶d as the mean value of the curve once it stabilizes exactly
as was done in [Geier et al. 2017b] for fairness of comparison. All
experiment values are taken from [Barati et al. 2014]. Fig. 2 (a)
demonstrates that our solver enters a converged state faster and
produces a mean value closer to the reference than the one from
[Geier et al. 2017a], indicating higher accuracy in physical quan-
tity estimation for relatively low Reynolds numbers. For higher
Reynolds values where drag crisis happens, both solvers cannot
predict 𝐶d values very accurately as shown in Fig. 2 (b), but this
regime is often considered beyond the realm of direct solvers [Ti-
wari et al. 2020] anyway. However, at such a regime, many small
scale vortices are generated near the boundary, so drag fluctuations
are expected to also decrease [Deshpande et al. 2017]. Given that
our model exhibits reduced fluctuations in time compared to [Geier
et al. 2017a], we argue that even at this regime, our entropy-driven
collision model brings better predictability of physical quantities.
Fig. 2 (c), indicates convergence of our new collision at a early stage
followed by a periodic fluctuation, while the large, irregular fluc-
tuations of the previous method does not provide a meaningful
confidence region for estimating the mean drag. Note that our use
of the adaptive relaxation rates for third-order moments given in
[Geier et al. 2017a] along with our entropy-based optimization for
higher-order relaxation rates could be conceived as a form of sub-
grid modeling, explaining why our lattice Boltzmann simulation
without turbulence modeling can capture drag crisis better than
other NS-based direct numerical solvers at similar grid resolutions.
Nevertheless, a real turbulence model, such as k-𝜔 model [Menter
1994], can be added to our solver to better resolve sub-grid flows
with higher accuracy Ð but at the cost of significantly increased

Fig. 3. Boundary treatment near solid object. For łcut-cellž boundary

nodes marked in orange, their unknown distribution functions must be

determined through boundary schemes instead of the regular streaming.

Yellow nodes mark nodes inside the solid while cyan nodes are inner fluids

nodes. Our boundary treatment for a node𝒙𝑏 uses the normalized distance𝑞

to the boundary surface along a link direction of 𝒄𝑖 with its inverse direction

denoted as 𝒄𝑖 to improve the approach of [Tao et al. 2018].

computing time. Instead, using our online entropy-based optimiza-
tion does not imply a significant reduction of efficiency: compared
to [Geier et al. 2017a], our adaptive relaxation is only around 10%
slower, thus slowing down the whole simulation by less than 5%.

3.2 Boundary treatment and surface force evaluation

In the context of designing a virtual wind tunnel, we need to address
three types of boundary conditions: static boundaries (e.g., a fixed
car model), fluid-solid coupling where the obstacle undergoes lim-
ited rigid transformations (e.g., wheels rotating), and computational
domain boundaries (which should not dramatically impact the nu-
merical evaluation of physical quantities over the model surface).
The accurate computations of forces induced by these three cases
are needed to obtain a detailed flow over the model and to evaluate
the required physical quantities such as the drag coefficient 𝐶d.

Static boundary treatment. A typical virtual wind tunnel embeds
a model of a solid object within the computational domain in order
to perform aerodynamic testing. In the case of our LBM flow solver,
the normal streaming process assumes a non-obstructed neighbor-
hood; when an object is present within the domain, we need to alter
the distribution functions on nodes adjacent to the object bound-
ary to account for the interaction of the fluid with the solid Ð see
Fig. 3 where the orange nodes are fluid nodes that require boundary
treatment while the yellow nodes are inside the solid body. Among
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Fig. 4. Comparing boundary treatments. We plot the variation over

time of drag coefficient of a sphere at 𝑅𝑒 = 400, 000, for different boundary

treatments but with the same entropy-optimized cumulant model. The

experimental value is near𝐶d=0.1 for this drag crisis case; a simple bounce-

back, still used in many LBM implementations, leads to unacceptable results,

producing large prediction errors and wide force fluctuations.

several boundary treatments in LBM, bounce-back [Ladd 1994] is a
well-established scheme which simply reverts any streaming of a
distribution function along a link that intersects the surface of the
model boundary. However, the simplicity of this method implies
a limited first-order accuracy when applied to curved boundary,
leading to a much larger error with stronger-than-expected force
fluctuations in time as shown in the black curve in Fig. 4 for the 𝐶d
temporal variation of a flow passing over a sphere at a high Reynolds
number. Interpolated bounce-back (IBB [Bouzidi et al. 2001]) and its
later variants [Yu et al. 2003; Ginzburg and D’Humières 2003; Chun
and Ladd 2007], on the other hand, offer a second- or third-order
treatment of curved boundary by considering a larger neighborhood
and taking into account the distance to the boundary surface along
a link. While this family of techniques improves accuracy, boundary
handling becomes less local, both impairing parallelism and prevent-
ing the treatment of narrow gaps between obstacles which regularly
happen in practical design engineering simulations; moreover, it
usually fails to better resolve thin boundary layers occurring in
high Reynolds number flows unless a fine grid resolution is used.
More recently, Tao et al. [2018] proposed a single-node approach
by employing approximations of distribution functions at bound-
ary points on links. More specifically, for a node 𝒙𝑏 near the solid
boundary whose link 𝒄𝑖 points to node 𝒙𝑎 and whose opposite link
𝒄𝑖 intersects the boundary at 𝒙𝑤 as depicted in Fig. 3, the authors
noted that by linear interpolation, one should have:

𝑓𝑖 (𝒙𝑏 , 𝑡+1) =
1

1 + 𝑞 𝑓𝑖 (𝒙𝑤 , 𝑡+1) +
𝑞

1 + 𝑞 𝑓𝑖 (𝒙𝑎, 𝑡+1) , (11)

where 𝑞 = ∥𝒙𝑏 − 𝒙𝑤 ∥/∥𝒄𝑖 ∥ is the normalized distance of the bound-
ary node to the object (i.e., the distance divided by the length of the
link). However, the value of the distribution function 𝑓𝑖 (𝒙𝑎, 𝑡 + 1)
was directly streamed from node 𝒙𝑏 at the previous time step, thus
the above equation is actually a single-node interpolation. Moreover,
the unknown value 𝑓𝑖 (𝒙𝑤 , 𝑡+1) was argued to be well approximated

by summing the equilibrium 𝑓
eq
𝑖 (𝒖𝑤 (𝑡), 𝜌𝑏 (𝑡)) (with 𝒖𝑤 (𝑡) being

the current boundary velocity) to which the non-equilibrium part

𝑓
neq
𝑖 (𝒙𝑏 , 𝑡) = 𝑓𝑖 (𝒙𝑏 , 𝑡) − 𝑓

eq
𝑖 (𝒖𝑏 , 𝑡) (12)

of the distribution function at 𝒙𝑏 is simply added back Ð resulting in
a simple single-node computation for boundary handling. However,
their suggested evaluations of equilibrium and non-equilibrium

distributions are not accurate enough for high Reynolds numbers
as they are derived from a series of low-order approximations. To
further improve accuracy, we change the way equilibrium and non-
equilibrium parts are approximated. First, we leverage the fact that
non-equilibrium parts are typically an order higher than equilibrium
parts [Chun and Ladd 2007], which means that we can simply em-
ploy the bounce-back of the non-equilibrium part of the distribution
function at boundary node 𝒙𝑏 to obtain a second-order approxi-
mation of the non-equilibrium part of the unknown distribution
functions via

𝑓
neq
𝑖 (𝒙𝑏 , 𝑡+1) = 𝑓

neq

𝑖
(𝒙𝑏 , 𝑡) . (13)

Note that this approximation is more reliable, in particular for large
gradients near boundary layers, than other possible interpolation-
based methods which typically introduce smoothing. For the equi-
librium part, we can also employ the same second-order accurate
single-node interpolation as done in [Tao et al. 2018] by writing:

𝑓
eq
𝑖 (𝒙𝑏 , 𝑡+1) =

1

1 + 𝑞 𝑓
eq
𝑖 (𝒙𝑤 , 𝑡+1) +

𝑞

1 + 𝑞 𝑓
eq
𝑖 (𝒙𝑎, 𝑡+1) . (14)

While 𝑓
eq
𝑖 (𝒙𝑤 , 𝑡+1) is well approximated as 𝑓

eq
𝑖 (𝒖𝑤 (𝑡), 𝜌𝑏 (𝑡)) be-

cause of density continuity, we still need to find how to approxi-

mate 𝑓
eq
𝑖 (𝒙𝑎, 𝑡+1). We initially tried to reconstruct the equilibrium

distribution based on the two macroscopic quantities 𝒖 (𝒙𝑎, 𝑡) and
𝜌 (𝒙𝑎, 𝑡); however, the use of 𝑡 instead of 𝑡+1 and the Hermite series
truncation implied by the equilibrium distribution reconstruction
negatively influence the accuracy of the boundary layer for high
Reynolds number flow simulations. Instead, we found more judi-
cious to leverage the fact that one has, very close to a solid boundary

in a nearly incompressible flows, 𝑓
eq
𝑖 (𝒙𝑎, 𝑡+1) ≈ 𝑓𝑖 (𝒙𝑎, 𝑡+1) as no

series truncation is involved, and this latter expression can be di-
rectly streamed from the post-collision of distribution functions at
𝒙𝑏 . Therefore, we obtain:

𝑓
eq
𝑖 (𝒙𝑎, 𝑡+1) ≈ 𝑓 ∗𝑖 (𝒙𝑏 , 𝑡). (15)

Combining Eqs. (13) and (15), the unknown distribution function
𝑓𝑖 (𝒙𝑏 , 𝑡+1) is now evaluated as:

𝑓𝑖 (𝒙𝑏 , 𝑡+1) = 𝑓
eq
𝑖 (𝒙𝑏 , 𝑡+1) + 𝑓

neq
𝑖 (𝒙𝑏 , 𝑡+1) (16)

=

1

1+𝑞 𝑓
eq
𝑖 (𝒖𝑤 (𝑡), 𝜌𝑏 (𝑡)) +

𝑞

1+𝑞 𝑓
∗
𝑖 (𝒙𝑏 , 𝑡) + 𝑓

neq
𝚤 (𝒙𝑏 , 𝑡) .

To validate the improved accuracy of our new boundary treat-
ment, we again turn to the challenging case of the drag crisis of
the flow passing around a sphere at a Reynolds number of 400, 000.
As Fig. 5 demonstrates, the flow velocity near the solid boundary
and the boundary layer separation point are better captured by our
method in Fig. 5 (b) when compared to an effectively equivalent
experimental visualization shown in Fig. 5 (c). Moreover, the 𝐶d
curve over time in Fig. 4 better matches the real wind tunnel 𝐶d
estimation, and with smaller fluctuations. This confirms that, for the
same grid, our improvement over [Tao et al. 2018] allows for even
smaller vortices to be generated near the solid boundary, leading to
a better converging shape of the wake flow and thus, more accurate
simulations of turbulent flows at high Reynolds numbers.

Dynamic coupling. A virtual wind tunnel also needs to accom-
modate limited dynamic one-way coupling, such as the rotating
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Fig. 5. Wake of sphere in drag crisis. The flow passing through a sphere at 𝑅𝑒 = 400, 000 is known to exhibit in real-life experiment a narrower turbulent

wake than at lower Reynolds numbers [Van Dyke 1982] (c) due to smaller scale vortices generated near the solid boundary, thus reducing drag significantly Ð

a paradox explained by the boundary-layer theory. Compared to [Tao et al. 2018] (a), our improved boundary treatment scheme at the same Reynolds number

(b) captures the separation point farther around the back of the sphere with a narrower wake, better matching the experimental visualization.

wheels of a car. Previous LBM methods adopted either a bounce-
back based approach with node refilling [Tao et al. 2016], or the im-
mersed boundary method [Li et al. 2016, 2020]. While a bounce-back
scheme with node-refilling may create spurious velocities around
object boundaries for high Reynolds number flows, the immersed
boundary method is usually much easier to implement but is only
first-order accurate, requiring higher resolutions and thus more
memory storage. A recent hybrid approach [Lyu et al. 2021] has also
been formulated to offer efficiency, but is not advisable for accurate
simulation of very high Reynolds number flow simulations due to
the thicker boundary layer it produces. In order to preserve higher
accuracy for thin boundary layer flows with dynamic fluid-solid
coupling, we decided to rely on the approach proposed above for
static boundary treatment, where now the boundary velocity 𝒖𝑤 is
involved at each intersected link. However, we apply such a new
boundary treatment in an immersed manner to avoid node refilling;
that is, fluid grids are built assuming no solid objects, and all the
nodes of a cut cell use this same boundary treatment. Note that com-
puting the intersection of a link with the solid boundary mesh needs
to be performed at each time step, requiring a search in a bound-
ing volume hierarchy [Karras 2012] on GPU which can be slow if
the grid resolution is very high near the boundary to guarantee
accuracy. We thus propose a novel implementation which greatly
reduces the computational cost of ray intersection and dynamic
coupling on GPU, which we will cover in detail in Sec. 3.4.

Domain wall treatment. The manner with which a domain bound-
ary is treated can also significantly influence the accuracy of the
physical quantities calculated inside. In order to minimize impact,
slipping boundary conditions are usually applied along the domain
wall away from the inlet and outlet. While there are multiple ways
to implement slipping boundary [Krüger et al. 2016], their accuracy
is typically not sufficient for strong turbulence, and the domain
has to be further expanded which is very inefficient and memory-
consuming. To enable more reliable simulation, we first enforce the
boundary condition as 𝒖𝑤 =𝒖𝑛 where 𝒖𝑛 is the nearest grid node
along the wall normal direction; then, using this wall velocity, we
treat the wall as a moving boundary and apply the treatment de-
scribed in the previous paragraph to calculate the wall’s distribution
functions. A similar treatment can be applied for inlets and outlets
if needed: knowing their velocity and pressure, missing distribution

functions can be reconstructed using the same boundary treatment
scheme we proposed. This simple treatment prevents the domain
boundaries from overly influencing the accuracy of our simulator.

Ground treatment. As virtual models are often placed on or near
the ground, the ground floor also requires special treatment: if the
flow near the ground is not well resolved, it may heavily affect the
overall simulation accuracy. Instead of the treatment of domain
walls discussed above, we adopt a special treatment for the ground
based on the reconstruction of missing distributions using a wall
model [Malaspinas and Sagaut 2014] which algebraically determines
the velocity 𝒖𝑔 at a node right above the ground, based on wall fric-
tion velocity deduced from nearby nodes, while its density 𝜌𝑔 is
assumed to be the same as the node right above it to enforce the
Neumann condition ∇𝜌 · 𝒏=0. We then recontruct the missing dis-
tributions {𝑓𝑖 } as 𝑓𝑖 = 𝑓 𝑒𝑞𝑖 + 𝑓 𝑛𝑒𝑞𝑖 with second-order accuracy using:

𝑓
𝑒𝑞
𝑖 ≈ 𝑤𝑖𝜌𝑔 +

(

1 +
𝒄𝑖 · 𝒖𝑔
𝑐2𝑠

+
(

𝒄𝑖 · 𝒖𝑔
)2

2𝑐4𝑠
−
𝒖𝑔 · 𝒖𝑔
2𝑐2𝑠

)

, (17)

𝑓
𝑛𝑒𝑞
𝑖 ≈ −

𝜏𝜌𝑔𝜔𝑖

2𝑐2𝑠
⟨𝑸,∇𝒖𝑔 + ∇𝒖𝑇𝑔 ⟩, (18)

where 𝒄𝑖 is the lattice velocity from Eq. (3), and𝑄𝛼𝛽 = 𝑐𝛼𝑐𝛽 − 𝑐2𝑠𝛿𝛼𝛽
(𝛿𝛼𝛽 being the Kronecker delta). Such awall function approach could
still be insufficient at very high Reynolds number, but developing
an accurate ground treatment for treating turbulent flow interac-
tion within the narrow channel between the virtual model and
the ground is still an active research topic; so any progress in this
direction could be adopted instead.

Force evaluation over the model surface. With the boundary treat-
ment described above, the force acting on a solid is computed using
the momentum exchange method [Ladd 1994; Mei et al. 2002]: the
momentum transferred to the solid at a given cut-cell node is ex-
pressed as the summation of fluxes across the boundary via:

Δ𝒑(𝒙) =
∑︁

𝑗∈𝐿 (𝒙 )
𝒄 𝑗 ′ (𝑓𝑗 (𝒙) + 𝑓 ∗𝑗 ′ (𝒙)), (19)

where 𝐿(𝒙) denotes the set of outgoing intersecting links (going
from the solid to the fluid) at 𝒙 , and 𝑓𝑗 (𝒙) is the distribution after
boundary treatment. The total force on a solid is thus the sum of
this term per cut-cell node inside the fluid, i.e.,

𝑭 =

∑︁

𝒙

Δ𝒑(𝒙). (20)
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Note that if an immersed treatment is adopted for fluid-solid cou-
pling instead, the summation is then over all cut-cell nodes.

3.3 Multiresolution simulation

Running the simulation framework we described up to now on a
single LBM grid would be enough for most CG applications looking
to efficiently capture a fluid flow over relatively simple geomet-
ric models for visual purposes. But in an engineering context, a
virtual wind tunnel must accommodate large domains (typically
of size 40m×20m×20m for a 16-foot car model) with a constraint
on resolving geometric details as small as 3mm typically to cap-
ture small-scale flow features well enough to ensure an accurate
evaluation of key physical quantities. A single grid would thus
have to be impractically large to fit these requirements, creating an
unacceptable wall-clock time and memory storage for simulation.
Multiresolution simulation is thus an indispensable ingredient of
a physically-accurate fluid simulator for engineering design, and
grid refinement has thus been systematically adopted in most indus-
trial simulators [Hou et al. 2019; Aultman et al. 2022; Romani et al.
2022]. However, as argued before, many traditional FVM-based
NS solvers usually require body-fitted unstructured meshes, for
which a versatile and fully automatic mesh construction algorithm
is extremely challenging to generate due to the complex geometry
(and sometimes, topology) of the prototypes. In the LBM litera-
ture, multiresolution methods often employ octree-based grid data
structure [Eitel-Amor et al. 2013; Hasert et al. 2014], but their GPU
implementations are quite involved [Schornbaum and Rüde 2016,
2018]. Instead, we propose a fully automatic block-based multireso-
lution grid construction method for our LBM fluid simulator that
is better adapted to efficient GPU implementation and can handle
flows through extremely complex structures as described next.

Multiresolution grid construction. Grid refinement is often guided
by different criteria, among which incoming flow direction and dis-
tance to a model [Lagrava 2012; Li et al. 2019] are arguably the most
common choices. We thus designed our automatic multiresolution
grid construction algorithm around these two factors. Given an
axis-aligned bounding box (AABB) of the model, we first extend
it by a certain distance 𝑑∗ representing the boundary layer thick-
ness determined by the Reynolds number, in order to form a larger
box-shaped region labeled Ω𝑛 Ð see the red box in Fig. 6. From the
whole simulation domain Ω, we then define the pure flow region
Ω𝑓 =Ω \Ω𝑛 . Inside Ω𝑓 , we construct our multiresolution data struc-
ture based solely on the direction of the incoming flow by using
axis-aligned grids of power-of-two resolutions which partially over-
lap (to ease grid transition); i.e., we go from coarse at the domain
boundary to finest at Ω𝑛 by ensuring that each uniform grid level
is twice as fine as its parent while being offset from the center Ω𝑛

along the incoming flow direction so as to cover more of the wake
flow (where the turbulence must be well resolved) than in the front
Ð see how the regions from blue to yellow unevenly straddle the
building in Fig. 6. As for inside Ω𝑛 , we refine the sampling once
further compared to the finest grid level in Ω𝑓 , but this time we
transition to a refinement based on the distance to the model: using
an unsigned distance field of the model computed within Ω𝑛 , we
use a once-refined uniform grid compared to the finest grid level

Fig. 6. Multiresolution grid construction. To keepmemory size low when

computing accurate predictions of physical quantities, multiresolution grids

are automatically constructed, with a refinement guided by the incoming

flow direction for all but the last grid level (left) Ð explaining the offset

of the different levels of grid compared to this architectural building so as

to capture its wake accurately Ð then by the distance to the object. All

active fluid nodes are finally found by flooding to ensure that the flow goes

through all the mesh openings larger than the finest grid resolution (right).

in Ω𝑓 , and consider its nodes to be valid only if they are within

a distance 𝑑∗ of the model Ð see the orange nodes in Fig. 6. Note
that we use a mask per grid node to indicate whether or not it is
a valid fluid node, and we adopt the efficient GPU-based approach
of [Imre et al. 2017] to compute the distance field. The resulting
multiresolution sampling is thus block-based and independent, as it
does not form a tree-like hierarchy Ð but it allows for a good transi-
tion between multiple levels of resolutions without the prohibitive
memory storage required by the continuous-scale approach of [Li
et al. 2019], for instance.

Dynamic objects. Because of the specific nature of a wind tun-
nel facility, we can restrict our handling of dynamic objects in a
simulation with one-way coupling to mostly rotations, such as the
wheels of a car spinning. From an axis-aligned bounding box of the
rotating object, we construct a grid with the finest resolution and
set all its nodes as valid fluid nodes. More complex motions, such as
the opening of a plane’s wheel well with the landing gear coming
out, can in fact be handled the same way, but one must then pick an
axis-aligned bounding box that encloses the complete motion of the
dynamic objects, which can be potentially wasteful in the number
of finest nodes depending on the scenario at hand. We leave such
very specific improvements to future work.

Dealing with complex models. We assumed until now that the
model surface is closed, for which using a signed distance is suffi-
cient to identify valid fluid regions. However, in real applications,
many models are not truly closed: e.g., a car may have a grill wire as
an external air inlet, or an architectural model can have small open-
ings, still larger in size than the finest grid cell, to let the wind flow
inside parts of the building. In this case, the above grid construction
is not sufficient: we must run a flooding algorithm on the finest grid
level to properly tag as valid the nodes that are connected to the
external flow. Starting from a known fluid node Ð e.g., the node
at the corner of the region Ω𝑛 Ð we check its 6 neighbor nodes
and perform link-surface intersection to see whether a neighboring
node is connected to the current fluid node, see Fig. 7 in 2D as an
illustration. Only if a neighboring node is connected to the current
fluid node do we mark it as a valid fluid node, and we propagate
through the valid fluid nodes using a breath-first search order such
that all fluid nodes inside Ω𝑛 are visited.
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Fig. 7. Propagation of valid fluid nodes. To find and tag all valid fluid

nodes, we start from an already known fluid node, e.g., node 𝒑 in 2D, then we

check its immediate neighbors to see whether a link intersects a boundary.

If no intersection is detected (e.g., link 𝒑𝒒), the untagged node 𝒒 is tagged

as a new valid fluid node. This process repeats in a bread-first search order,

enabling internal regions to be connected to the external fluid region.

Grid interpolation. Ourmultiresolution grid construction enforces
that only two grids that are one level apart can overlap. We must
therefore define how to evaluate and update in time the distribu-
tion functions at a given node based on the values stored on these
two levels. For this purpose, we strictly follow the approach de-
scribed in [Lagrava et al. 2012]. The internal nodes of a coarser
parent grid provide boundary values which allow the finer grid to
be updated twice (since a twice-finer grid requires twice-smaller
integration time steps in LBM), where the distribution functions at
the boundary nodes of the finer grid are readily interpolated from
the coarser grid at the current time step. Then, the boundary nodes
of the coarser grid can be updated by interpolating from the already
updated finer grid at the next time step, and so on. The interpolation
is done by separating the distribution functions into equilibrium
and non-equilibrium parts, where the equilibrium part is computed
by first interpolating macroscopic quantities before evaluating its
equilibrium distribution values, while the non-equilibrium part is
interpolated directly; both interpolations are done using high-order
schemes [Lagrava et al. 2012]. This process is applied recursively
from the coarsest grid to the finest grid in a cascaded serialized
manner. Fig. 16 for instance shows an instantaneous macroscopic
velocity field cross-section from the simulation of the same archi-
tecture model from Fig. 6 using this interpolation approach.

3.4 Implementation details

We now go over a number of implementation details that we found
have significant impacts on the overall efficiency of our technique
once implemented on GPU. An overview of our simulation process
is summarized in Alg. 1.

Efficient link-mesh intersections. Computing the intersections be-
tween links and one or more 3D models is required as preprocessing
for static objects or at each time step if dynamic solids like a rotating
wheel are involved in the simulation. Usually, link-mesh intersec-
tion relies on the construction of a tree structure (e.g., a bounding
volume hierarchy (BVH)) of the mesh elements on GPU to improve
efficiency [Karras 2012]. However, in the context of our LBM sim-
ulator, this acceleration still leads to intersection costs superior to
the actual flow simulation at each time step. Instead, we thus opted
for a spreading-based algorithm inspired by the immersed bound-
ary treatment from [Chen et al. 2022]. While parallelization is over

Fig. 8. Efficient link-boundary intersection. Instead of building a tree-

based data structure, we parallelize our link-mesh intersection over all

boundary elements Ð here boundary edges ℓ in 2D. For a given boundary

edge, we efficiently locate the cells that the edge straddles, and perform

intersection for every link of the nodes that belong to the covered cells.

all cut-cell fluid nodes in tree-based approaches, we parallelize in-
stead overmesh elements. For each element on the boundary surface,
we check which grid cells they straddle; then all the grid nodes
belonging to the straddled cells are taken as candidate nodes for
intersection test, see the orange nodes in Fig. 8 for a 2D illustration
where the elements are 2D edges (ℓ) of the boundary. For each of the
candidate nodes, all links are checked through an intersection test
against the current mesh element, and if a link is intersected, we
compute and store the lattice-normalized distance value 𝑞 for this
node which will be used for the boundary treatment described in
Sec. 3.2. For each cut cell node, we thus keep an array to store these
potentially different 𝑞 values (8 in 2D, 26 in 3D). Note that for a
given mesh element, the number of candidate nodes that need to be
tested always remains relatively small, thus the new algorithm runs
much faster on GPU due to improved data coalescence and load
balancing: for a model having a size of around 4.5 meters whose
mesh contains about 10 million elements with a spatial resolution
of 4mm (dictating the size of the finest grid resolution), the acceler-
ation over tree-based approach is around a factor ten, significantly
reducing the total computational cost of a simulation Ð especially
when dynamic objects are involved.

Data layout. In LBM, streaming of distribution functions requires
accessing neighboring nodes; thus specific data structures are needed
for efficient access in our multiresolution setup. First, all distribution
functions are stored in an array-of-structure layout as proposed in
[Chen et al. 2022]. However, since our valid fluid nodes are not
always contiguous, a compact and GPU-friendly data structure is
preferable; but perfect spatial hashing [Lefebvre and Hoppe 2006]
or compact storage as used for sparse matrices [Greathouse and
Daga 2014] either increase the number of memory fetches or vi-
olate continuity of data storage, resulting in latency for memory
access. Moreover, block-based structures with z-ordering for irregu-
lar geometric domains as proposed in [Chen et al. 2022] increase
implementation complexity and memory fetching as well. As a com-
promise, we simply create an index map for each node of a grid
which directly indexes the local distribution functions by pointing
to a linear array in global memory containing all valid fluid nodes
packed in an x-y-z order. We found this layout to have similar over-
all efficiency as the block-based structure in [Chen et al. 2022] for a
much simpler implementation.
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4 TESTING OF OUR VIRTUAL WIND TUNNEL

We now discuss the various tests we performed to validate the
accuracy and efficiency of our virtual wind tunnel testing facility,
along with a series of additional rendered results to show how the
improvements we made to state-of-the-art LBM techniques do not
only allow for faster wind tunnel testing in automotive, architectural,
or aeronautical industries, but also for high-resolution realistic fluid
flows for VFX production.

4.1 Simulation setup and visualization

We implemented our virtual wind tunnel to exploit the massive
parallelism of graphics processors, and simulations were executed
with one or more NVIDIA A100 GPU(s). We ran our code on a work-
station equipped with an Intel 20-core CPU and 128 GB of RAM.

Fig. 9. Typical virtual wind tunnel test. For accurate prediction of physi-

cal quantities, the computational domain (in wireframe) should have a size

typically 10 times the size of the model’s bounding box, in each direction.

Algorithm 1: Our virtual wind tunnel testing facility

Initialization

Multiresolution grid construction; ⊲ Sec. 3.3

Precompute link-mesh intersections; ⊲ Sec. 3.4

Initialize 𝜌 , 𝒖 and 𝑓𝑖 ;
for 𝑡 = 1 to 𝑁 do

Collision

Transform 𝒇 to 𝒌; ⊲ [Geier et al. 2017a]

Calculate relaxed 𝒌∗; ⊲ Sec. 3.1

Transform 𝒌∗ to 𝒇 ; ⊲ [Geier et al. 2017a]

Streaming

switch link flag do

case unknown cut-cell link do

Boundary treatment; ⊲ Sec. 3.2

case unknown ground link do

Ground treatment; ⊲ Sec. 3.2

otherwise do

Normal streaming;

end

end

Post-processing

Evaluate forces on objects; ⊲ Sec. 3.2

end

end

Fig. 10. Drag of a sphere vs. Reynolds number. Just like real-life experi-

ments [Morrison 2013; Barati et al. 2014] exhibit a sudden drop in drag for

a sphere at a Reynolds number around Re=400,000 (drag crisis), both [Tao

et al. 2018] and our kinetic solver demonstrate a similar drop at roughly the

same Re, followed by a partial drag recovery.

Each simulation is typically set up by placing the test model at one
third along the direction of the flow (streamwise), and in the middle
of the orthogonal plane (spanwise) to capture the turbulent wake
flow well. For test models flying in the air, we place the model in
the middle along the vertical direction; otherwise, they are placed
on the ground. The simulation domain is selected to be typically
8 to 10 times in size compared to the bounding box of the model
Ð see Fig. 9 for an example illustrating the setup of our virtual
wind tunnel domain for the aerodynamic simulation of a car model.
Cross-section visualizations of the magnitudes of velocity fields as
in Figs. 12, 13, 15 and 16 were generated on the finest grid resolution
of the simulation, where the color of each pixel is mapped from
the linearly interpolated velocity magnitude Ð other fields such as
vorticity or pressure are done similarly. To display the pressure (or
pressure coefficient 𝐶p) on the surface of a model, we did not use a
simple projection or extrapolation from nearby cut-cell nodes as the
nodes used could have different distances to the surface, causing
sudden changes of pressure values and generating obvious staircase
phenomena; instead, for each mesh vertex, we perform pressure
interpolation at an offset position one-cell-width away along the
outer normal direction to ensure consistent interpolation, and use
this resulting value as the mapped color, which leads to much im-
proved surface visualization Ð see Fig. 1 for instance. We also use
passively-advected particles injected in the virtual flow, which were
converted to VDB files and rendered with [Maxon 2023] to offer a
Lagrangian visualization of the flow in some of our figures, such as
Fig. 17. Simulations were computed in a few hours depending on the
scale of the model, the size of the computational domain, as well as
the finest spatial resolution required, with our multiresolution grid
construction usually taking a fewminutes: Tab. 2 details timings and
configurations for all the simulations we conducted in this paper.

4.2 Validation of our virtual wind tunnel

To validate our virtual testing facility, we perform three increasingly
difficult cases for which experimental data acquired in real-life
wind tunnels exist to compare our results both qualitatively and
quantitatively: drag crisis for a sphere, a golf ball in flight, and finally,
three variants of a benchmark car model (that we each test with or
without the wheels being allowed to spin) which are typically used
to validate a solver’s accuracy, and for which we can thus better
compare performance and accuracy.
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Fig. 11. Drag of golf ball vs. Reynolds number. Compared to the real-

world experiments reported in [Bearman and Harvey 1976] and [Aoki et al.

2010] for the drag coefficient of golf ball as a function of the Reynolds

number Re, our wind tunnel simulator provides very similar evaluations.

Note that the drop in drag coefficient (drag crisis) happens far earlier than

in the case of a smooth sphere, as expected Ð see Fig. 10.

Drag crisis for a sphere. As mentioned earlier, the phenomenon
called drag crisis refers to the seemingly paradoxical fact that the
drag coefficient of, say, a sphere, suddenly drops at a critical Reynolds
number and only partially recovers as the Reynolds number keeps
increasing, which is very challenging to correctly predict for a nu-
merical solver without turbulence modeling. Because this drag cri-
sis happens at high Re and depends on the surface property of
the sphere (the effect occurs at lower Reynolds numbers when the
sphere is rough than when it is smooth), experimental data is exceed-
ingly difficult to gather accurately (in fact, Fig. 5(c) was obtained at
a lower Reynolds number by adding a trip wire to artificially create
a higher effective Reynolds number), explaining the discrepancy be-
tween experiments such as [Morrison 2013] and [Barati et al. 2014].
Our virtual wind tunnel manages to qualitatively reproduce the sud-
den drop in drag coefficient for a sphere as illustrated in Fig. 10 at
about the correct Reynolds number, and with drag coefficients closer
to the experimental values in general beyond the critical Reynolds
number as compared to an LBM solver using the boundary treat-
ment of [Tao et al. 2018] without entropy-based cumulant collision
model. Note that the drag prediction from our method is slightly
shifted from the critical drag-crisis region, producing a larger de-
viation from the experimental data at Re=200,000. In this critical
region (where even the two experimental curves differ), the numeri-
cal treatment of the surface Ð and in particular of its roughness Ð
can easily alter drag prediction as discussed in [Geier et al. 2017b].
One should also point out that, like many other state-of-the-art fluid
flow solvers, we over-estimate the drag coefficient values for higher
Reynolds numbers: while experiments seem to show a drop down
to 𝐶d = 0.1, we reach 0.175; but it remains better than the results of
[Tao et al. 2018] which go down to 0.2 only.

Flight of a golf ball. We also performed tests on a golf ball in a high-
speed flowwith our virtual wind tunnel. The golf ball model we used
has 362 dimples (The PGA tour uses balls with a minimum of 322
and a maximum of 376 dimples), with a ratio of dimple depth to ball
diameter equal to 0.007. As Fig. 11 demonstrates, our evaluated drag
coefficients are comparable to the published experimental values
from [Bearman and Harvey 1976] and [Aoki et al. 2010]. We also use

this golf ball case to show the ability of our solver to resolve small
geometric features: as expected, the flows at 𝑅𝑒 =100, 000 around
a golf (dimpled) ball vs. a ping-pong (smooth) ball are drastically
different, since dimples generate very small boundary layer vortices
that interact with the surrounding flow, reducing the attachment
of the laminar boundary layer to the surface of the golf ball. This
makes the overall flow separate farther around the back side of the
golf ball, thereby forming a converging shape of the wake with
reduced drag, compared to the wider wake with larger vortices for a
smooth ball due to laminar boundary layer separation as depicted in
Fig. 12 with our solver via passively-advected colored particles. This
converging shape is very similar to the wake of a ball close to drag
crisis, explaining the drag reduction mechanism by a production
of small-scale vortices around the solid boundary. Note that our
multiresolution simulation is key here in capturing this kind of
details: a single resolution with the same total number of grid nodes
fails to resolve the thin turbulent boundary layer created by the small
dimples, forming different separation points of boundary layer flows
and wake shapes, and thus grossly over-estimating the underlying
drag coefficients, see Fig. 13 (right).

Aerodynamics of DrivAer car model. Finally, we ran our virtual
testing facility on three variants of the DrivAer model, a benchmark
car model created at Technische Universität München to investigate
automotive aerodynamics and validate numerical simulations [Heft
et al. 2011, 2012a]. We tested three rear-end forms Ð called Fastback,
Notchback and Estateback respectively Ð in our experiments. All
meshes are digital models of a real car down to a 3mm accuracy,
with detailed underbody, mirrors, but no engine bay flow, while the
domain resolution is chosen to balance accuracy and efficiency. For
each model, we tested the aerodynamic characteristics at 57.6𝑘𝑚/ℎ
based on our simulator in two typical scenarios used in industrial
tests: without or with ground simulation (GS) Ð that is, in the first
case we assume that the ground is fixed and the wheels do not spin,
while in the second case, the car has been put on a conveyor belt to
simulate the road moving under the car, and the wheels are rotating
on it. These two scenarios provide great insights on the various
sources of numerical issues, showing that even the seemingly in-
nocuous effects of a rotating wheel or a fixed ground can greatly
affect wind tunnel testing and the resulting aerodynamic coeffi-
cients. We plot the resulting drag curves in time in Fig. 14, showing
that the drag begins to stabilize once the transient effects early in
the simulation attenuates past the first second. The actual drag coef-
ficient estimates are then obtained by averaging the values between
1.2𝑠 and 2𝑠 , and compared to ground-truth values from [Heft et al.
2012b] after a final calibration via mean shift as listed in Tab. 1.
Note that this mean shift was measured by computing the average
deviation between a set of computed drag coefficients and their
corresponding experimental data over different setups, which is
a common engineering method to compensate for limited resolu-
tion and the resulting systematic failure to resolve the turbulent
flow between the car body and the ground. Mean velocity and pres-
sure corresponding to the same averaging range as above are also
shown in Fig. 15, where pressure on wheels are shown separately
as insets to highlight the differences between the simulation with
and without ground simulation Ð clearly indicating that rotating

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



14 • Lyu, C. et al.

Fig. 12. Ping-pong vs. golf ball at Re=100,000.While a ping-pong ball (top) differs (up to scale) from a golf ball (bottom) only in the absence of tiny dimples

on its surface, testing these two balls in our wind tunnel exhibits very different velocity and surface pressure (𝐶p) fields (left); consequently, the flows visualized

via passively-advected dyed particles are dramatically different (right), providing a good intuition of why golf balls can travel much further.

Fig. 13. Multi- vs. single-resolution simulation. A multiresolution simu-

lation better resolves the boundary layer flow going within the small dimples

of a golf ball (left), while a single-resolution simulation with the same total

number of grid nodes cannot (right). As a consequence, we witness a very

different behavior of the turbulent wake when the velocity magnitude (with

a colormap indicating its value in𝑚/𝑠) is visualized.

wheels reduce drag due to their generation of small boundary layer
vortices. Expectedly, the case with no ground simulation is easier,
and our virtual wind tunnel captures the drag coefficient values al-
most perfectly with an average error of 0.4%, which is, based on the
car companies we communicated with, far better than the industry
standards requiring less than 3% error in this case. With ground
simulation, our maximum error reaches 3.17%, still safely below the
limit tolerated in the automotive industry, which is of 5% in this
more challenging case.

Comparisons with industrial software suites. As mentioned early
on, Siemens’ StarCCM+ [Siemens PLM Software 2023] and Dassault
Systèmes’ PowerFLOW [Exa/3DS 2023] are two well-established

Fig. 14. Car drag over time.We plot the simulated drag coefficient in time

for different DrivAer car configurations, with or without ground simulation

(GS, meaning ground motion and rotating wheels are simulated).

Fig. 15. DrivAer Fastback aerodynamic simulation. A vertical cross-

section shows the magnitude of the mean velocity flow around the DrivAer

fastback benchmark car model, while the mean pressure over the model

surface colors the mesh. Mean pressure distributions without (red inset)

and with (blue inset) ground simulation are also visualized on the wheels.

commercial tools implementing respectively an FVM-based NS
solver and an LBM-based solver, both running on CPU clusters for
industrial users. Because time-dependent unsteady flow simulation
with StarCCM+ can take up to weeks of computations (having the
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Table 1. Drag estimation accuracy. We compare our estimates of the

drag coefficient𝐶d for different DrivAer configurations with experimental

data, with or without ground simulation (GS, meaning ground motion and

rotating wheels are simulated).

Car configurations Predicted𝐶d Measured𝐶d Relative Error

Fastback w/o GS 0.2849 0.284 0.32%
Notchback w/o GS 0.2851 0.286 -0.31%
Estateback w/o GS 0.316 0.318 -0.63%
Fastback w/ GS 0.2811 0.275 2.22%
Notchback w/ GS 0.283 0.277 2.17%
Estateback w/ GS 0.3089 0.319 -3.17%

wheels rotating require dynamic remeshing for such a solver), users
often settle for a steady-state solution as a compromise, which does
not closely match the real physical measurement process because
boundary approximations of rotating objects are often employed.
PowerFLOW overcomes these difficulties and affords higher per-
formance, although at the cost of relying on a larger CPU cluster
than Siemens’ solver due to the increase in the number of nodes
needed, which often curbs its practical appeal. Instead, our virtual
wind tunnel system inherits the benefits of kinetic solvers (and thus
the advantages of PowerFLOW), but runs on GPU with far less
stringent hardware requirements: case in point, with an NVIDIA
A100 GPU having 6,912 CUDA cores, the simulation for drag pre-
diction of the DrivAer Fastback model without ground simulation
took only around 3 hours to complete, which is 10,356 GPU core
hours per second of simulation. James et al. [2018] recently reported
a similar drag prediction on a Notchback model using PowerFLOW
and StarCCM+, which require approximately 80 hours on 96 CPUs
and 13 hours on 128 CPUs, respectively, to get a converged result.
This indicates that our efficiency is likely to be better using the
same number of processor cores, assuming that each of their CPU
had at least 8 cores Ð although comparing performance across CPU
clusters and GPUs is surely difficult. More strikingly, the drag coeffi-
cients reported for PowerFLOW do not show an obvious difference
with or without ground simulation, which contradicts experimental
data. Other results have approximately around 3% error compared
to the experimental measurements reported in [Heft et al. 2012b].
We note that they used a model without side mirrors while we used
a full car model, and no calibration information was provided. Thus,
formulating a more precise statement on how accurate our solver is
in comparison to PowerFLOW and StarCCM+ still requires further
testing, but our initial analysis of performance indicates that we
are at least not worse, and likely better than existing commercial
software Ð and our maximal 3.17% error on drag prediction with
ground simulation and with both side mirrors and a detailed under-
body (which naturally produce stronger turbulence) proves that our
virtual testing facility clearly meets current industry standards.

4.3 Other simulation results

In order to demonstrate our applicability not only to industrial de-
sign purposes but also as a tool for VFX animation of exquisitely
complex flow patterns around models, we have performed a num-
ber of additional simulations. For instance, we conducted a high-
resolution aerodynamic simulation of a scaled Being 787 aircraft
model at an angle of attack of 8 degrees at relatively low speed (0.16
Mach) in Fig. 17. The model has a length of 6.16 meters and a wing

Fig. 16. Aerodynamics of an architectural model. Our virtual wind tun-

nel can simulate the airflow passing through a building structure containing

covered passages inside. Visualized here is the velocity field magnitude for

a horizontal cross-section, where the internal flow is clearly visible.

span of 3.2 meters. The simulation was conducted on two NVIDIA
A100 GPUs, with the finest grid capturing details of 3.75 millime-
ters near the model boundary. It took around 1.8 hours to run a
simulation of 1.7 seconds. We also simulated the airflow within a
complex scaled architectural model containing covered hallways,
where node flooding was necessary to select all the valid grid nodes,
see Fig. 6. The model has a bounding box of size 4.34𝑚×1.06𝑚×3.76𝑚,
within a domain of size 25𝑚×8𝑚×25𝑚. It took 1.9 hours to complete
a simulation of 3.5 seconds, see the resulting cross-section visual-
ization of velocity in Fig. 16. To further demonstrate the ability of
our multiresolution testing facility to handle high geometric and
topological complexity, we simulated a flow passing through an
irregular pipe with nozzles on its surface (Fig. 19), where the nozzles
connect the internal fluid region with the exterior. The pipe model
has a bounding box of size 1.3𝑚×2𝑚×0.83𝑚, within a domain of size
7.84𝑚×12𝑚×4.96𝑚. The simulation took 0.9 hours to produce 6 sec-
onds of simulation. Visualized with smoke particles, it is clear that
the flow goes into the pipe through the bottom left inlet and leaves
the pipe through the nozzles as expected, highlighting our ability
to automatically construct multiresolution grids on very complex
models. We hope to be able to quantitatively compare some of these
results (plane, building) by acquiring higher quality model meshes
together with validation datasets in the near future, in addition to
the current visual demonstrations.

4.4 Discussions and limitations

While the state-of-the-art CG methods recently proposed [Li et al.
2020; Lyu et al. 2021] have significantly raised the bar for both effi-
ciency and accuracy compared to other CG fluid solvers, they still
have not reached a level of accuracy, scale, and even stability needed
for industrial design simulations Ð see Fig. 18 for a comparison in a
very simple case at relatively low Reynolds number but with mul-
tiresolution simulation, in which previous LBM methods proposed
in CG blow up. Conversely, methods in CFD have managed to pro-
pose ever-more accurate collision models and boundary treatment
methods, but they mostly focused on the solver itself, ignoring many
other important factors in a virtual wind tunnel system such as the
non-trivial automatic multiresolution grid construction or efficient
geometry handling, which are key to practical use in industrial
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Fig. 17. Aerodynamics of a Boeing-787 passenger aircraft. We conducted a high-resolution aerodynamic simulation on dual GPUs for a scaled aircraft

model of Being 787 at an angle of attack of 8◦ . The pressure field is color-mapped over the aircraft body surface, while passively-advected dyed particles

injected from the six different locations along the leading edge of the main wing are visualized.

Fig. 18. Typical blowup of latest LBM solvers in CG. Existing LBM

methods in CG mostly rely on central-moment collision models [Li et al.

2020; Lyu et al. 2021]. Due to the entangling of various orders of moments

and improper high-order relaxation rates, they often blow up at lowReynolds

numbers (here, 𝑅𝑒=100,000) when simulating even a simple flow around the

sphere with multiresolution grids, see black region (right), due to spurious

velocities near the solid boundary (left).

design. Our work not only bridges the gap in scale (through mul-
tiresolution) and accuracy (through our entropy-driven cumulant
model and enhanced boundary treatment) necessary to reach en-
gineering applications, but also significantly broadens the type of
simulation that the VFX industry can benefit from: fluid flows over
large-scale scenes and/or zoomed-in shots are easily handled with
much higher efficiency than current NS solvers. Importantly, the
ability to simulate low, high, or very high Reynolds numbers is a
crucial benefit in making sequences that capture the proper scal-
ing of turbulence, a feature that has often been lacking in previous
graphics techniques.

Limitations. Our method is not without limitations. First, as we
have seen previously, our drag coefficient predictions are far better
for a static setup (without GS) than for a dynamic one (with GS);
while this is true of many other solvers, how to improve dynamic
boundary condition to have predictions of physical quantities with
consistent error margins deserves further research. Second, our
handling of data structure for irregular domains is currently not
optimal, so we are guessing that further improvements in terms of
performance are possible. Lastly, LBM solvers usually have higher
memory usage than the corresponding NS solvers with similar ac-
curacy Ð albeit for a far accrued efficiency. How to reduce memory
consumption is another aspect that needs further developments.

5 CONCLUSION

In this paper, we developed a new multiresolution LBM-based fluid
flow simulation technique to build an efficient and accurate virtual
wind tunnel for physical evaluation of digital models. The improved
accuracy and efficiency brought forth by our contributions based on
state-of-the-art techniques from both CG and CFD afford a unique
opportunity to not only perform visual simulation of complex fluid
dynamics for VFX, but also to design, preview, and assess the design
of cars, planes, or buildings at subsonic weakly-compressible speeds
prior to the construction of their full-scale mockup: our results allow
for fine spatial resolution of flow fields near model boundaries to
be made early in the design process for analysis and feedback, and
consequently, it helps accelerate the design process.

Our work calls for a number of follow-up works. We handled
dynamic objects in one-way coupling with restricted rotations and
translations to build a virtual wind tunnel; pushing further the treat-
ment of dynamic objects and allowing two-way coupling would
offer a much more versatile toolbox for both engineers and anima-
tors to simulate quickly and accurately large-scale scenes and/or
zoomed-in shots with much higher efficiency than many current
NS solvers in CG field. Currently we do not allow dynamic grid
reconstruction, although it would keep a low memory usage Ð but
at the cost of slowing down the entire simulation. Creating a virtual
water tunnel, maybe by building over the recent work of [Li et al.
2022], would also be a great challenge to generate even more com-
plex simulations. On the engineering side, we were able prove that
a few key improvements made over recent LBM solvers presented
in CG suffice to now open them up to industrial design audiences.
While further advancing towards industrial-strength computational
tools for flow simulation may bring us outside of the realm of CG,
it is an exciting avenue for a number of reasons. First, it represents
a rara avis in CG, whose industrial impact outside of the entertain-
ment industry has only sporadically happened. Second, it may also
offer a number of opportunities to incorporate advanced graphics
practices (e.g., in visualization) into industrial practices. Finally, it is
an additional hint that the usual gap between graphics simulation
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Fig. 19. Airflow passing through a pipe with nozzles.With our multiresolution solver, we can simulate a flow passing through an irregular transparent

pipe with various nozzles on its surface. By injecting smoke particles at the inlet of the pipe, it becomes clear that the flow gradually fills up the pipe while

exiting from the nozzles. Note that the surrouding air was given an initial constant velocity, which blows the smoke rightward after it comes out.

and computational science & engineering is further eroding, offer-
ing opportunity for collaborations across the two fields in the near
future.
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Table 2. Statistics. Parameters and performance statistics of our results, where łSim. durationž refers to the duration of flow simulation measured in real-life

seconds, while łWall-clock per sim. s.ž refers to the actual wall-clock time it took to simulate one second of a flow, and since the grid construction is only done

once, we consider it as preprocessing. Note that for some of the simulations (Figs. 12 and 16) we use Reynolds number equivalence to rescale the physical

parameters by adjusting the viscosity, as typically done in the LBM literature to offer normalized parameters without affecting the dynamic behavior.

Cases Domain Size (𝑚3) #Grids Finest Δ𝑥 Viscosity (𝜈) Flow Speed #GPUs Sim. duration Grid construction Wall-clock per sim. s.
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