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Fig. 1. TopoCut at a glance. We introduce a new bottom-up construction of generalized cut-cell meshes which split an input domain (left: a box with
hollowed-out text; right: a letter-shaped domain) based on grid-aligned (left, five along each dimension) or arbitrary (right, ten random cuts) cutting planes.
The resulting cut-cell meshes are slightly shrunk to show the interior; red lines show intersections between cut planes and input models.

Given a complex three-dimensional domain delimited by a closed and non-
degenerate input triangle mesh without any self-intersection, a common ge-
ometry processing task consists in cutting up the domain into cells through a
set of planar cuts, creating a “cut-cell mesh”, i.e., a volumetric decomposition
of the domain amenable to visualization (e.g., exploded views), animation
(e.g., virtual surgery), or simulation (finite volume computations). A large
number of methods have proposed either efficient or robust solutions, some-
times restricting the cuts to form a regular or adaptive grid for simplicity;
yet, none can guarantee both properties, severely limiting their usefulness
in practice. At the core of the difficulty is the determination of topological
relationships among large numbers of vertices, edges, faces and cells in order
to assemble a proper cut-cell mesh: while exact geometric computations
provide a robust solution to this issue, their high computational cost has
prompted a number of faster solutions based on, e.g., local floating-point
angle sorting to significantly accelerate the process — but losing robustness
in doing so. In this paper, we introduce a new approach to planar cutting of
3D domains that substitutes topological inference for numerical ordering
through a novel mesh data structure, and revert to exact numerical eval-
uations only in the few rare cases where it is strictly necessary. We show
that our novel concept of topological cuts exploits the inherent structure of
cut-cell mesh generation to save computational time while still guaranteeing
exactness for, and robustness to, arbitrary cuts and surface geometry. We
demonstrate the superiority of our approach over state-of-the-art methods
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on almost 10,000 meshes with a wide range of geometric and topological
complexity. We also provide an open source implementation.
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1 INTRODUCTION
Given its boundary geometry 𝜕Ω, a three-dimensional domain Ω
can be split into a volumetric decomposition through a series of
planar cuts. While this basic geometric operation is required in a
large number of geometry processing applications, it has gathered
increased attention in recent years due its increasingly common
use in virtual surgery simulation [Sifakis et al. 2007; Patterson et al.
2012] and in the construction of “cut-cell” meshes for fluid flow sim-
ulation [Meinke et al. 2013; Edwards and Bridson 2014; Jaśkowiec
et al. 2016; Azevedo et al. 2016; Tao et al. 2019], where a possi-
bly large and intricate input surface geometry is intersected with
a background (Cartesian or adaptive) grid to allow for efficient
finite-volume computations. Assuming that the boundary surface
geometry is provided as a triangle mesh, one would expect that the
task of computing the volumetric decomposition induced by the
input mesh and the various planar cuts to be trivial: after all, it only
involves intersections of planes and linear facets — which can all be
evaluated exactly with rational numbers — along with topological
components (cut-cells, cut-faces, cut-edges and cut-vertices) and
their combinatorial structure.
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1.1 Related work
Unfortunately, such a process remains a challenge in practice. While
the use of exact arithmetic [GMP 2021] and/or exact predicates
[Shewchuk 1997] guarantees correctness [Zhou et al. 2016] (and
thus, robustness to arbitrary cuts), their respective computational
cost is simply impractical when large meshes or many planar cuts
are involved, spurring many authors to try to improve the speed
of geometric tests. Exact geometric computing concepts [Yap and
Sharma 2008] like delayed evaluations or interval analysis as used
in CGAL [CGAL 2021] can maintain correctness while saving a
good amount of computations, but computational complexity re-
mains too high for most practical applications. Indirect geometric
predicates [Attene 2020] used in [Cherchi et al. 2020; Diazzi and
Attene 2021] leverage lazy intermediate representations to make the
geometric tests exact, yet much faster than previous methods for
fast and robust solid modeling operations. Recent approaches for
general Boolean operations [Bernstein and Fussell 2009; Campen
and Kobbelt 2010] have also tackled cut-mesh generation as it is akin
to a form of clipping [Bajaj and Pascucci 1996; Wang and Manocha
2013] which can be efficiently implemented via a plane-based Binary
Space Partition (BSP) tree. However, the use of exact arithmetic still
renders these methods computationally intensive; this prompted
[Nehring-Wirxel et al. 2021] to formulate a new scalable approach
combining a local BSP in octree cells and 256-bit integer arithmetic
in order to process an input mesh using 26-bit coordinates, improv-
ing computational times tenfold.

Compared to exact or high-precision arithmetic, the use of single-
precision or double-precision floating-point operations is far more
efficient. Yet, their well-documented round-off and digit-cancellation
errors irremediably bring about both geometric and topological in-
consistencies, leading to erroneous volumetric decompositions on
which downstream applications fail. Heuristics based for instance
on numerical perturbations [Edwards and Bridson 2014] can dra-
matically reduce occurrences of failure without significant com-
putational overhead, but at the price of topologically inconsistent
outputs. By further restricting to axis-aligned cut-planes, Tao et
al. [2019] recently proposed a novel approach to infer topological
information through polar orderings. However, while the resulting
Mandoline tool was designed to guarantee topological correctness,
they still rely on floating-point evaluations, which prevent robust-
ness as demonstrated in Sec. 6.4. Another existing tool restricted to
Cartesian cut-cell meshes, called Carl3D [Aftosmis et al. 1998], uses
instead adaptive precision arithmetic and simulation-of-simplicity
tie-breaking. This latter tool is commonly used in computational
fluid dynamics due to its robustness, but incur significant com-
putational overhead for complex boundary meshes as local grid
refinements are triggered — at times, unreasonably so.

1.2 Contributions
This paper revisits the fundamental geometric operation of domain
cutting by introducing a new method dubbed TopoCut.

• This name refers to the simple, yet powerful idea that we exploit
to dramatically accelerate domain cutting: we remove the need
for local ordering of edges or faces (see Fig. 2) as proposed in
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Fig. 2. Didactic example of TopoCut: For a input domain with already
two cuts (left), every cut-face is topologically related to a boundary loop
(enumerated from 1 to 4); so a new cut (𝑄, 𝑃, 𝑅) can directly identify the
loops (here, 1 and 3) that need to be cut in two without numerical evaluation.
Previous methods like Mandoline would rely instead on edge-cycle sorting
around the cut-vertex 𝑃 to proceed, which is slower and error prone.

previous works to treat planar cuts by leveraging the current
mesh connectivity to determine which nearby cell to cut instead.

• These topological cuts allow for the efficient, yet provably robust
construction of a volumetric decomposition from an input sim-
plicial complex and a set of planar cuts by relying on purely topo-
logical information to assemble the final cell complex, reverting
to exact numerical evaluations only when strictly necessary —
i.e, when the local topological situation is ambiguous.

• By exploiting the combinatorial topology of cell complexes and
respecting their hierarchical construction from uniquely-labeled
cut-vertices all the way to cut-faces, we show how to leverage
equivalence classes to remove redundancy in the sets of cut-cell
elements, and to bypass line and cycle ordering to infer most
cuts using purely topological information — for instance, a 𝑑-
dimensional convex cell split by a (𝑑−1)-dimensional cut that
goes through one of the (𝑑 −2)-dimensional elements of the
convex cell can be established without any knowledge of the
coordinates of the vertices involved (see Figs. 3, 4 and 16).

• Consequently, almost all of the bottom-up topological construc-
tion that we perform using half-edge and half-face data struc-
tures can be done exactly, yet very efficiently. We show that

Table 1. Summary of our notations.

Notation Explanation
Ω 3D solid domain
M Input triangle mesh
P Input cut planes
V Input vertices
E Input edges
T Input triangles
F Input planar faces (triangles and planes)
V Cut-vertices
E Cut-edges
F Cut-faces
C Cut-cells

(𝑓 𝑖 , 𝑓 𝑗 , 𝑓 𝑘 ) A triple of faces
(𝑓 𝑖 , 𝑓 𝑗 ) A tuple of faces
𝐻 (𝑓 ) Half-edge data structure of face 𝑓
H𝑘

𝐹
𝑘-th half-face data structure after 𝑘 cuts

H𝐹 Final half-face data structure
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only a few easily identifiable cases require numerical evaluation
to remove ambiguity, incurring an overall marginal overhead.

This novel strategy to output a generalized cut-cell mesh leads
to significant computational gains (typically, between 3× and 10×
faster on average for our implementation compared to the fastest
existing methods [Tao et al. 2019; Diazzi and Attene 2021]) while
matching the output of slow, but exact methods as demonstrated
on nearly 10,000 models of various shape complexity and topology.
We also discuss ways to compute a floating-point representation of
our cut-cell mesh for downstream processing — a lossy conversion
known to introduce self-intersections and degeneracies [Milenkovic
and Nackman 1990; Devillers et al. 2018], but for which we still
outperforms existing approaches.

2 OVERVIEW OF TOPOCUT
Given an orientable, non-self-intersecting and watertight input tri-
angle meshM with verticesV , edges E and triangles T , and a set
of arbitrary cut planes P = {𝑝1, 𝑝2, ..., 𝑝𝑛}, we want to compute a
volumetric decomposition, denoted as the “cut mesh” for brevity.
We summarize the notations used in this paper in Tab. 1.

®𝑒1

®𝑒2 ®𝑒3

®𝑒4
𝐵𝐴
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𝐻𝑒 𝐻 ′𝑒=⇒
®𝑒2 = next( ®𝑒1 )
®𝑒4 = next( ®𝑒3 )

®𝑒5 = next( ®𝑒1 ), ®𝑒7 = next( ®𝑒3 )
®𝑒2 = next( ®𝑒6 ), ®𝑒4 = next( ®𝑒8 )
®𝑒6 = oppo( ®𝑒5 ), ®𝑒8 = oppo( ®𝑒7 )

Fig. 3. Example of topological face cut. When cutting the half-edge loop
of an existing cut-face by a cut-edge whose cut-vertices are already in the
face (left), existing topological information is sufficient to update the data
structure and perform the cut (middle). For a non-manifold cut-vertex (right,
blue point), the situation is ambiguous, and edge-cycle ordering is required
to choose between the two possible options.

Fig. 4. Example of 3D topological cut.While cutting the half-face data
structure of a cut-cell (left) by a cut-face whose cut-edges are already part
of the cell (middle), the same type of topology-only update of the cut-cell as
in Fig. 3 can be performed. For a model with non-manifold edges, we need
to resort to face-cycle ordering to deal with the resulting ambiguity.

2.1 Input Mesh
Before providing a bird’s eye view of our TopoCut approach, we
discuss the few requirements that the input mesh must satisfy:

• The input triangle meshM forms the boundary of a simply-
connected 3D solid domain Ω with finite volume, watertight,
and without self-intersection (see App. A). All the normals of the
input triangles are consistently oriented outwards. Furthermore,
we assume thatV has no duplicated vertices (no two vertices
should be collocated), and each triangle in T is not degenerated.

• The input set P of cut planes has no duplicated planes, and each
plane 𝑝 ∈P is defined by n𝑇𝑝x +𝑑𝑝 =0∀x∈𝑝 , for a normal n𝑝 ≠0
and an scalar offset 𝑑𝑝 .

Similar to many previous works and to ensure the accuracy of
intermediate computations, we assume that all the coordinates and
plane parameters to be rational numbers, without loss of generality
since most inputs typically use floating-point coordinates. With a
high-precision numerical library such as GMP [GMP 2021], exact
arithmetic in the field Q of rational numbers provides the basis for
zero-error evaluation if need be.

2.2 Output Cut Mesh
The output cut mesh will be composed of cut-verticesV , cut-edges
E, cut-faces F and cut-cells C, such that the domain cutting problem
can be formulated as{

M(V, E,T),P
} Cut−→

{
V, E, F , C

}
.

While more thorough descriptions of the domain cutting problem
have been mentioned in previous works such as [Tao et al. 2019],
we review its precise definition here so as to properly define what
we mean by “robustness” and “correctness” of our construction. If
we denote by F = T ∪ P all the faces (triangles & planes) involved
in the input, correctness of the TopoCut connectivity means that:
• The union of all cut-cells covers the entire domain bounded byM.
The boundary of cut-cells are formed by cut-faces, the boundary
of cut-faces are cut-edges, and the boundary of cut-edges must
be cut-vertices, i.e.,

V 𝜕← E 𝜕← F 𝜕← C.

Each element in E, F and C is thus properly represented by
its boundary. All of these elements are involved in the cut-cell
complex, and none of these elements are duplicates or degenerate
(i.e., no zero volumes, areas, or lengths).
• Each cut-vertex is the intersection of exactly three faces in F , i.e.,
∀𝑣 ∈V, 𝑣 = 𝑓 𝑖 ∩ 𝑓 𝑗 ∩ 𝑓 𝑘 , 𝑓 𝑖 , 𝑓 𝑗 , 𝑓 𝑘 ∈ F . Thus, triples of faces in
F can be used to represent cut-vertices. Note that there may exist
two or more triples representing identical spatial coordinates;
this will be handled in the end of Sec. 3.1.
• Each cut-edge is at the intersection of two faces in F , i.e., ∀𝑒 ∈E,
𝑒 ⊂ 𝑓𝑖∩ 𝑓𝑗 , with 𝑓𝑖 , 𝑓𝑗 ∈F . Two cut-vertices along an intersection
line between two faces form a cut-edge that is devoid of any
other cut-vertex; thus a linear ordering of cut-vertices determines
cut-edges (see Fig. 6, left).
• Each cut-face is a subset face of F , i.e., ∀𝑓 ∈ F , 𝑓 ⊆ 𝑓 ∈F , en-
closed by a chain of cut-edges. In the chain, two cut-edges around
a common cut-vertex forms a corner of the cut-face if there are
no other cut-edges in between (see Fig. 5, left). As a consequence,
cut-faces are defined via edge-cycle ordering (see Fig. 6, middle).
• Each cut-edge belongs to two or more adjacent cut-faces, and
two cut-faces adjacent to a common cut-edge form the wedge
(dihedral angle) of a cut cell if no other cut-face lies in between
(see right of Fig. 5), so cut cells are defined via face-cycle ordering
(see Fig. 6, right).
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Fig. 5. Corners and wedges. Adjacent cut-edges to a cut-vertex in a cut-
face form a corner (left); adjacent cut-faces of a cut-edge in a cut-cell form
a wedge (right). Here, Ω+ means the outside of domain Ω.

Due to the hierarchical nature of the cell complex construction
of the volumetric decomposition, we see therefore that given cut-
vertices, local orderings of mesh elements define the cut mesh connec-
tivity — and vice-versa. In our TopoCut approach, we will enforce
the correctness of the domain cutting description by construction,
making heavy use of the aforementioned orderings but inferring
them from topological clues found in the current mesh connectivity.
Robustness of TopoCut simply refers to the fact that our approach
terminates after generating a cut-cell complex satisfying all the
conditions listed above, and its result does not differ from what a
(far slower) method using exact arithmetic would produce.

Holes and voids. One issue worth mentioning early on is that,
while most cut-faces and cut-cells after cutting have only one con-
nected boundary, there can technically bemultiple connected bound-
aries if they contain holes or voids. Indeed, a simply-connected cut-
face is enclosed by cut-edges, but it can look like a simple disk — in
this case, only one connected set of cut-edges defines its boundary
— or like an annulus for instance — in which case, there are two
such connected sets. As a matter of definition, we will say that two
cut-edges 𝑒𝑖 and 𝑒 𝑗 are connected if there exists a path of adjacent
cut-edges to go from one to the other. Similarly, because a cell can
have a ball-like or cheese-like topology, we say that two cut-faces
are connected if there is a path of adjacent cut-faces joining the
two. In the general case, there can be several holes in a cut-face,
or several voids in a cut-cell, so one must extract its multiple con-
nected boundaries, and some of these boundaries will have opposite
orientation. Because the boundary is piecewise linear, there is no
difficulty in computing the signed volume exactly with rational num-
bers, therefore, each cut-face or cut-cell has a well defined “inside”
or “outside” label. Simply put, cut-faces and cut-cells with negative
volume actually enclose parts that are outside of Ω. Depending on
the application being targeted, one may want to keep this detailed
topology of each cut-face and cut-cell, or simply remove the holes
and voids by cutting the cut-faces or cut-cells open through their
homology generators. Note that the total sum of all the oriented
volumes of the cut-cells will be equal to the input domain volume.

2.3 Modified half-edge and half-face data structure
To help with the construction of a cut-cell mesh, we will use a volu-
metric variant of the common half-edge data structure, traditionally
used for surface meshes. More precisely, we start from the half-face
data structure [OpenVolumeMesh 2021] to represent the relation-
ship between faces and cells. Each cut face 𝑓 ∈ F along with an
adjacent cell 𝑐 ∈ C form an oriented half-face ®𝑓 (𝑐) ∈ ®F . Its “opposite”
oriented half-face, stored as opposite( ®𝑓 ) in the half-face structure, is

𝑒𝑎

𝑒𝑏

𝑒𝑐

𝑣
𝑒

𝑓𝑎
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𝑣𝑎→𝑣𝑏→𝑣𝑐

Fig. 6. Orders of mesh elements. Left: linear order of cut-vertices. Middle:
edge-cycle order of the one-ring of a cut-vertex. Right: face-cycle order of
the one-ring of a cut-edge.

thus the same face 𝑓 but this time associated with another adjacent
cell 𝑐′ ∈C, where 𝑓 =𝑐 ∩ 𝑐′. If there is no such “opposite” cell (i.e.,
at the boundary of the domain), the opposite half-face pointer is set
to empty. This data structure provides efficient local operations to
query neighboring cells from faces or edges. Since we also need to
efficiently represent the relationship between points and edges, we
use an extension of the usual half-edge data structure as well, and
integrate it into a half-face data structure, similar to [OpenMesh
2021]. For each cut-edge 𝑒 along with an adjacent oriented half-face
®𝑓 , one can uniquely define a half-edge ®𝑒 ( ®𝑓 ) ∈ ®E for 𝑒 ∈E and with
𝑒 ⊂ 𝜕𝑓 and ®𝑓 ∈ ®F . The common “opposite” operation on a half-edge
queries the half-edge on the adjacent face, which is ill-defined for
edges with more than two adjacent faces. Note that the orientation
of the half-face ®𝑓 defines an oriented cycle around edge 𝑒 as shown
in Figs. 6 and 7, which uniquely defines the half-edge on the “next
adjacent” face. As a consequence, we replace the common opposite
operation acting on half-edges on a face by an “adjacent” operation
with the following definition:

adj( ®𝑓 , 𝑒) = ®𝑒 ( ®𝑓 ′), (1)
where 𝑓 ′ is the next adjacent face of 𝑓 along the cycle. It is easy to
verify that this new operation is consistent with the common “op-
posite” operation if 𝑒 is adjacent to two consistently oriented faces.
It should be noticed here that the input mesh can also be viewed as
an extreme case of cut-cell mesh with a simple, complicated cell Ω
and no cuts, which can be consistently represented by this new data
structure. In order to simplify our explanations in the remaining of
our paper, we do not use the half-edge ®𝑒 ( ®𝑓 ) explicitly, but instead
use a tuple ( ®𝑓 , 𝑒), and use the function adj( ®𝑓 , 𝑒) ∈ ®F to describe the
adjacent half-face of ®𝑓 along 𝑒 in the same cell.
Our half-edge/half-face data structure will be used to represent

the connectivity and ordering information among cut-vertices, cut-
edges, cut-faces and cut-cells, and has no geometric (numerical)
information. To have a complete description of the output cut mesh,
the coordinates of all the cut-vertices are also required, but they
will be separately stored in a set Q. Giving a cut-vertex with index
𝑣 , we can retrieve its coordinates coord(𝑣) as a rational number (or,
equivalently, a floating-point value) from this cut-vertex set.

2.4 Algorithm pipeline and key concept
In an overall manner similar to [Tao et al. 2019], our algorithm con-
sists in first computing the cut-vertices, then assembling cut-edges,
cut-faces and cut-cells in order, see Figs. 8 and 9. The various stages
of our construction differ sharply from previous works, however;
they are summarized as follows:
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®𝑓1=adj( ®𝑓2, 𝑒), ®𝑓2=adj( ®𝑓1, 𝑒), ®𝑓0=oppo( ®𝑓1),
®𝑓5=adj( ®𝑓0, 𝑒), ®𝑓0=adj( ®𝑓5, 𝑒), ®𝑓4=oppo( ®𝑓5),
®𝑓3=adj( ®𝑓4, 𝑒), ®𝑓4=adj( ®𝑓3, 𝑒), ®𝑓2=oppo( ®𝑓3) .

®𝑓5=adj(oppo( ®𝑓1), 𝑒)=adj( ®𝑓0, 𝑒)
Cycle Order ®𝑓1 → ®𝑓5 → ®𝑓3 → ®𝑓1®𝑓0

®𝑓1

®𝑓2®𝑓3
®𝑓4
®𝑓5

𝑒

Fig. 7. Face-cycle order of the one-ring of edge 𝑒 , along with its associated
half-face structure.

(1) Compute all intersection lines and points, and represent them
symbolically by tuples and triples respectively, containing the
indices of the faces (triangles or planes) that intersect (see Sec. 3).

(2) Sort the intersection points on each intersection line, removing
duplicate points and outside parts to get cut-vertices V and
cut-edges E (see Sec. 3).

(3) Cut every face 𝑓 in F (i.e., each triangle 𝑡 in T and cut-plane 𝑝 in
P) by the cut-edges found above, and store them in an individual
half-edge data structure 𝐻 (𝑓 ) (i.e., 𝐻 (𝑡) and 𝐻 (𝑝) in Fig. 8) —
see Sec. 4.

(4) From the half-edge data structures {𝐻 (𝑡)} related to all the tri-
angles in M, generate an initial half-face data structure H0

𝐹
enclosing the volumetric domain surrounded byM (see Sec. 5.2).

(5) Given the current half-face data structure H𝑘
𝐹
, cut it into the

next “refined” half-face data structureH𝑘+1
𝐹

by a half-edge data
structure 𝐻 (𝑝) of an unprocessed cut-plane 𝑝 ∈P (see Sec. 5.3);
repeat until no cut-plane is left.

M,P V E

{𝐻 (𝑡)}

H0
𝐹

H1
𝐹

H2
𝐹

· · · H𝑛
𝐹

{𝐻 (𝑝)}

𝐻 (𝑝1) 𝐻 (𝑝2) 𝐻 (𝑝3) 𝐻 (𝑝𝑛)

Fig. 8. Data flow. Overview of our algorithm.

While our algorithm (schematically summarized in Fig. 8) could
rely on a number of linear, edge-cycle, and face-cycle orderings as
was proposed in recent works (possibly through delayed evaluation
or adaptive accuracy for efficiency), the overall cost of these oper-
ations does not scale well with the complexity of the input mesh
and the number of planes. Instead, TopoCut leverages the fact that
numerical sorting is in fact unnecessary in most cases, as illustrated
in Fig. 2 and as shown in practice in Figs. 3 and 4: one can directly
infer, from the current adjacency graph, which surrounding cell(s)
to cut. Fully exploiting the efficacy of topology-only cutting will
significantly save computational time, while keeping the results ex-
act, i.e., equivalent to using exact arithmetic. Only a few cases that
are topologically ambiguous will need exact evaluation, requiring a
negligible amount of computations overall and scaling extremely
well with input complexity.

3 GENERATION OF CUT-VERTICES AND CUT-EDGES
Our construction begins by finding all cut-vertices. As mentioned
earlier, each cut-vertex is the intersection point of three faces in
F = T ∪ P, i.e., an intersection between triangle faces in T and/or
infinite large planes in P. Each cut-vertex 𝑣 ∈ V , whose location in
space is defined with three coordinates in Q3, is thus defined by a
face triple in Z3 through

(𝑓 𝑖 , 𝑓 𝑗 , 𝑓 𝑘 ) B 𝑣 = 𝑓 𝑖 ∩ 𝑓 𝑗 ∩ 𝑓 𝑘 , where {𝑓 𝑖 , 𝑓 𝑗 , 𝑓 𝑘 } ⊂ F . (2)
Not all face triples are forming a cut-vertex, and a valid face triple
should have only one intersection point among its three triangles
and/or cut-planes. However, a cut-vertex may be associated with
multiple triples composed of indices of the different faces which just
happen to intersect at the same spatial location. It is worth noting
that our representation is different from the triples in [Tao et al.
2019] as it applies to arbitrary cuts instead of just axis-aligned cuts,
and it only includes integer indices, with no numerical values stored.
We now elaborate how to find all such triples and subsequently gen-
erate cut-edges, before finally merging duplicate triples to generate
the final list of distinct cut-vertices.

3.1 Intersection lines between faces
Directly enumerating all triples of faces in F = T ∪ P to check if
they intersect can be done with complexity |F |3. In practice, we
begin by finding all the pairs of faces intersecting along a line first,
for a complexity of |F |2: this automatically group cut-vertices on
the same line together, and intersection between this line and all
other faces is performed in a second step. Intersection lines are
represented as unordered tuples of faces of three possible types:
• (𝑡𝑖 , 𝑡 𝑗 ) ∈ (T ,T): intersection line of two triangles, i.e., an input
edge given our input requirements;
• (𝑡, 𝑝) ∈ (T ,P): a triangle 𝑡 and cut-plane 𝑝 intersect at a point
or along a line n𝑝× n𝑡 ≠0, where n𝑝 and n𝑡 are the normals of 𝑝
and 𝑡 respectively; note that if the triangle lies within the plane,
there is no actual cut;
• (𝑝𝑖 , 𝑝 𝑗 ) ∈ (P,P): intersection line of two planes 𝑝𝑖 and 𝑝 𝑗 , im-
plying that 𝑝𝑖 ∩ 𝑝 𝑗 ≠∅, or equivalently, n𝑖×n𝑗 ≠0, where n𝑖 and
n𝑗 are the normals of 𝑝𝑖 and 𝑝 𝑗 respectively.

Exact arithmetic computation is used in this step for robustness,
see App. B for practical details. Then, for each intersection line
of two faces 𝑓 𝑎 and 𝑓 𝑏 , we enumerate all the remaining faces in
F to check for possible intersection with this line. If faces 𝑓 𝑎, 𝑓 𝑏
and 𝑓 𝑐 intersect at a single point (even if it is outside of the input
domain), (𝑓 𝑎, 𝑓 𝑏 , 𝑓 𝑐 ) is marked as a point on the line (𝑓 𝑎, 𝑓 𝑏 ). As we
describe next, we must now order all these points so as to segment
the intersection line; note that all the line segments outside of the
region delimited by the input meshM will be removed later on.

Line sorting. All the points (𝑓 𝑎, 𝑓 𝑏 , 𝑓 𝑐𝑘 ), 𝑘 = 1, ...,𝑚 on an inter-
section line (𝑓 𝑎, 𝑓 𝑏 ) must be sorted. If the intersection line (𝑓 𝑎, 𝑓 𝑏 )
is degenerate, which is possible in the (T ,P) case (only a corner of
the triangle is on the plane), there is no cut-edge on it. Otherwise,
we proceed as in [Tao et al. 2019]: we pick a direction ®ℓ that is not
orthogonal to the line (𝑓 𝑎, 𝑓 𝑏 ), compute the rational coordinates
𝑥 ∈ Q3 corresponding to the triple, and then (𝑓 𝑎, 𝑓 𝑏 , 𝑓 𝑐𝑘 ) along line
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F
input mesh faces
and cut planes

F ⊗ F
intersection lines

F ⊗ F ⊗ F
intersection points

Q
coordinates of
cut-vertices

Line ordering
(equivalence class of
intersection points)

V
cut-vertices

E = V ⊗ V
cut-edges

®E =
−−−−−−→V ⊗ V

half-edges

F = V (𝑚)
𝑚-side cut-faces

®F =
−−−−→
V (𝑚)

𝑚-side half-faces

C = F (𝑛)
𝑛-side cut-cells

Edge-cycle ordering around cut-vertices
(equivalence class of next half-edge)

Face-cycle ordering around cut-edges
(equivalence class of adjacent half-face)

Fig. 9. Data structure abstraction. Schematic description of the data structure in our algorithm.

Fig. 10. Split Joint. The Joint mesh is cut by a regular arrangement of
planes. Left: inner cut-edges (orange), middle: outer parts of intersection
lines (red), right: boundary intersection lines (blue).

Fig. 11. Cut-vertices and cut-edges for a sliced tetrahedron. Cut-
vertices are indicated with blue points when on the input vertices, green
when on the edges of the input, orange when on the input triangles, and
dark red when they are at the intersection of cut-planes inside Ω. Cut-edges
are shown in blue when between cut-planes and input triangles, and yellow
when between cut-planes inside Ω.

(𝑓 𝑎, 𝑓 𝑏 ) is parameterized by 𝛾𝑘 ∈Q with

𝛾𝑘 = 𝑥 · ®ℓ . (3)

Using the parameterized coordinates 𝛾𝑘 , we can now sort the triples
on (𝑓 𝑎, 𝑓 𝑏 ) into an ordered sequence {(𝑓 𝑎, 𝑓 𝑏 , 𝑓 𝑐𝑙 )}𝑙 based on their
values 𝛾𝑘 . If the same 𝛾𝑘 value is found for multiple vertices, we
call these points “equivalent” since they share identical coordinates,
and we merge them into a single cut-vertex. Note that any ®ℓ that is
not orthogonal to the line (𝑓 𝑎, 𝑓 𝑏 ) will result in the same sorting
results up to a possible order reversal. The ordered sequence of non-
equivalent points thus defines a set of non-degenerate segments.

3.2 Identifying inner and outer cut-edges
The oriented input meshM defines three distinct regions: the do-
main boundary 𝜕Ω, the inside of the domain Ω− , and the outer
space Ω+. Relevant cut-edges must thus be classified into two sets:
the cut-edges on 𝜕Ω, and cut-edges belonging to the inside of Ω,
see Fig. 10. From the non-degenerated segments of (T ,T) and
(T ,P) (i.e., those induced by a triangle facet and with a non-zero
length), we obtain all boundary cut-edges — and if two segments
have the same end-points, they are identified as the same cut-edge.
From tuples of the (P,P) type, however, cut-edges may be inside,
outside, or on the boundary of Ω, and only inner cut-edges are rele-
vant in our domain cutting context. Noting that boundary cut-edges
from (P,P) must have already been identified from the (T ,P) and
(T ,T) types, we just need to know which cut-edges are inside of
the domain. This determination will also help to generate inner
cut-faces later on.

The intersection lines ℓ = 𝑝𝑖∩𝑝 𝑗 for plane tuples (𝑝𝑖 , 𝑝 𝑗 ) ∈ (P,P)
are segmented by the input mesh into an inner part, and an outer
and boundary part. We just have to locate the transitions, which
can be achieved through a ray casting method typically used in
determining if a point is inside a polyhedron [Kalay 1982; Feito
and Torres 1997] by counting the number of times a ray passes
through the boundary 𝜕Ω (see Fig. 12 for a 2D example). Define
a binary function 𝑠 (.) ∈ {0, 1} indicating whether an oriented line
®ℓ in the direction of line ℓ gets into or out of Ω at 𝑣 ∈ ℓ ∩ 𝜕Ω:
when ®ℓ passes from inside to outside or from outside to inside at
𝑣 , 𝑠 (𝑣) = 1; otherwise 𝑠 (𝑣) = 0. Given all previously-found triples
of type (P,P,T) in (𝑝𝑖 , 𝑝 𝑗 ) ∈ (P,P), (i.e., the triples representing
cut-vertices on ℓ ∩ 𝜕Ω), we remove duplicate triples and get a set of
vertices {𝑣1, 𝑣2, ..., 𝑣𝑚} along ®ℓ that we sort; for each 𝑣 in this sorted
set, we calculate 𝑠 (𝑣) as explained in App. C, and obtain a series of
binary values {𝑠1, 𝑠2, ..., 𝑠𝑚}. Then cut-edges (𝑣𝑘 , 𝑣𝑘+1) are identified
as inside or not by simply checking parity:

(𝑣𝑘 , 𝑣𝑘+1) ∈
{
Ω−, if (∑𝑘

𝑖=1 𝑠𝑖 )mod 2 = 1,

Ω+ ∪ 𝜕Ω, otherwise.
(4)
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®ℓ𝑠1=1
𝑠8=1

𝑠7=1
𝑠6=1

𝑠5=1
𝑠4=0

𝑠3=0
𝑠2=1

Ω−

Fig. 12. 2D example of inner cut-edges (orange segments) along a line ℓ .

3.3 Extract cut-vertices and cut-edges
We have already evaluated the exact coordinates for all the cut-
vertices (i.e., face triples) right before our line sorting, so it is trivial
to group the triples with the exact same coordinates together into
a unique cut-vertex; note that we can leverage the line order we
computed to accelerate this check. We end up with a set of different
cut-verticesV; cut-edges, which are unordered tuples inV ⊗ V ,
have thus no duplicates — completing this stage. Cut-vertices for a
tetra mesh example with axis-aligned cuts are shown in Fig. 11.

4 CUT-FACE GENERATION THROUGH HALF-EDGES
Once we have found all the tuples of intersection lines, cut-vertices
V , and cut-edges E, we are ready to construct cut-faces. As we are
about to see, we proceed one face at a time and collect all of its
elements touching a boundary triangle, before building an initial
half-edge structure and cutting it by all the intersection lines rep-
resented by face tuples. The key idea at this stage is to properly
set the “next” and “opposite” of each cut-edge in the half-edge data
structure, which boils down to exactly and efficiently ordering the
cut-edges around each cut-vertex, see Figs. 13 and 15.

next

next

next
®𝑒0

®𝑒1

®𝑒2®𝑒3

®𝑒4 ®𝑒5

®𝑒1 = next(®𝑒2), ®𝑒0 = opposite(®𝑒1),
®𝑒5 = next(®𝑒0), ®𝑒4 = opposite(®𝑒5),
®𝑒3 = next(®𝑒4), ®𝑒2 = opposite(®𝑒3).
Cycle Order ®𝑒1 → ®𝑒5 → ®𝑒3 → ®𝑒1

Clockwise ®𝑒5 = next ◦ opposite(®𝑒1)

Fig. 13. The cycle order of the one-ring edges of a vertex and its half-
edge structure; notice that the ordering can be deduced from the opposite
and next relations of the half-edges.

4.1 Initialization from boundary triangles

For all faces in F , we need to find the entities (intersection lines,
cut-vertices and cut-edges) that are part of a boundary triangle.
Consequently, for each triangle 𝑓 ∈ T , we first find the tuples
containing 𝑓 in (T ,T), i.e., we find the sets:

{(𝑓 , 𝑡) ∈ (T ,T) | ∀𝑡 ∈ T }. (5)

For each cut plane 𝑓 ∈ P, besides the part outside of Ω, we
also exclude the parts within a boundary triangle because they will
already be in the half-edge data structures of boundary triangles.
Therefore, we just have to find the tuples containing 𝑓 that form an
intersection line with 𝑓 :

{(𝑓 , 𝑡) ∈ (T ,P) | ∀𝑡 ∈ T and 𝑡 ⊄ 𝑓 }. (6)

For each tuple, we already sorted all the triples (cut-vertices) along
the intersection line in Sec. 3.1, thus we already have the cut-edges
within 𝑓 . Note that if 𝑓 is a boundary triangle, all the intersection

𝑝

lines mentioned above are on its boundary. In
degenerate cases, there may be inner cut-edges
as well if 𝑓 is a cut plane (see inset), but they only
require a few additional checks. When there exist coplanar triangles
on the cut plane 𝑓 , and since these triangles will have their own
half-edge structures, we do not need to consider them. Some tuples
in (𝑓 , 𝑡) are related to the cut-edges in 𝜕(𝑓 ∩ Ω)\𝜕(𝑓 ∩ Ω−), which
can also be removed. Now, according to the two adjacent regions of
each cut-edge on 𝑓 , the boundary of 𝑓 ∩ Ω− has three types of cut-
edges: inner-outer, inner-inner and inner-boundary, see (1),(2),(3)
in Fig. 14 respectively; but the boundary of 𝑓 ∩ Ω has another two
types, namely outer-boundary and outer-outer, which are not useful,
see (4),(5) in Fig. 14. Each tuple (𝑓 , 𝑡) is related to one intersection
line between 𝑓 and 𝑡 ; if this intersection line does not belong to 𝜕𝑡 ,
the tuple is kept since the line is of inner-outer type; otherwise, the
intersection line is on the boundary 𝜕𝑡 , i.e., it is an input edge 𝑒 ∈ E.
We then check its type via face-cycle sorting of normals of adjacent
triangles of 𝑒 and plane 𝑓 : if it is an outer-boundary or outer-outer
type, we remove it.

Ω− Ω+

(1)

Ω− Ω−

(2)

Ω− 𝜕Ω

(3)

Ω+ 𝜕Ω

(4)

Ω+ Ω+

(5)
Fig. 14. Types of tuple (𝑝, 𝑡 ) . Line indicates intersection between 𝑝 and 𝑡 .

Fig. 15. Half-edge data structure. Examples of half-edge structures for
(left) a triangle and (right) a cut plane formed by axis-aligned planar cuts.

n𝑓

𝑓

Now that we have gathered all the cut-edges re-
lated to boundary triangle for face 𝑓 ∩ Ω, we can con-
struct the initial half-edge data structure 𝐻0 (𝑓 ). Cut-
edges are unordered tuple of vertex indices of the type
(𝑣𝑎, 𝑣𝑏 ), 𝑣𝑎, 𝑣𝑏 ∈ V , and we want to turn them into oriented half-
edges, producing ordered tuples of vertex indices [𝑣𝑎, 𝑣𝑏 ]. We simply
pick the orientation consistent with the (outward) face normal of
𝑓 ∈T or the plane normal n for 𝑓 ∈P. That is to say, for a triangle,
the cut-edges in its boundary have an orientation consistent with
its boundary vertex ordering; for a plane 𝑝 , the orientation of the
cut-edges in 𝑝 ∩ 𝑡 are chosen to be consistent with n𝑝 × n𝑡 , where
𝑡 is a triangle on the boundary of the input mesh, see Fig. 15. Its
next half-edge must be of the form [𝑣𝑏 , 𝑣𝑥 ], where 𝑣𝑥 is determined
by cycle ordering of boundary cut-edges around 𝑣𝑏 . If there are
only two cut-edges (𝑣𝑎, 𝑣𝑏 ) and (𝑣𝑏 , 𝑣𝑐 ) adjacent to 𝑣𝑏 , the next of
[𝑣𝑎, 𝑣𝑏 ] is simply [𝑣𝑏 , 𝑣𝑐 ]; the edge-cycle ordering around vertices
𝑣𝑏 allows the handling of non-manifold 1D boundaries.

We do not explicitly record information for the face of a half-
edge: the “next” operation provides an equivalence relationship
among half-edges, and the equivalence class of a half-edge is a loop
surrounding a face. All the faces in the half-edge data structure are
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thus the quotient set of all the half-edges under the “next” operation.
The “opposite” can be simply constructed for pairs of half-edges
[𝑣𝑎, 𝑣𝑏 ], [𝑣𝑏 , 𝑣𝑎] in the current half-edge data structure. Because we
assumed our mesh input to be an orientable watertight surface, the
operations for “next” and “opposite” are always well defined.

4.2 Repeatedly cutting by planes

Given the initial half-edge structure 𝐻0 (𝑓 ), we now can recursively
cut it by intersection lines within 𝑓 . All the intersection lines that
are parts of a face 𝑓 can be found by tuples of the form:

{(𝑓 , 𝑝) ∈ (T ,P) ∪ (P,P) | ∀𝑝 ∈ P}. (7)

If a tuple in this set is colinear to one from {𝑓 , 𝑡} in the initial half-
edge structure; we can safely discard it. Otherwise, we recursively
cut the face 𝑓 with the current half-edge data structure 𝐻𝑘 (𝑓 ) by
each intersection line from the set in Eq. (7). In each cut, we need to
add the cut-edges on the intersection line (𝑓 , 𝑝) to𝐻𝑘 and update the
next and opposite pointers to maintain the half-edge data structure.
Similarly to the earlier case, the “next” pointer is determined through
cycle ordering. Then each cut-edge (𝑣𝑎, 𝑣𝑏 ) on (𝑓 , 𝑝) provides two
half-edges [𝑣𝑎, 𝑣𝑏 ], [𝑣𝑏 , 𝑣𝑎] with opposite orientations.

𝑣𝑎 𝑣𝑏

𝐴

𝐵 𝐶

+ 𝑣𝑎 𝑣𝑏 =

𝐴

𝐵 𝐶

𝑣𝑎 𝑣𝑏

⟨𝐴, 𝑣𝑎, 𝐵,𝐶, 𝑣𝑏⟩, (𝑣𝑎, 𝑣𝑏 ) ⇒ {⟨𝐴, 𝑣𝑎, 𝑣𝑏⟩, ⟨𝑣𝑎, 𝐵,𝐶, 𝑣𝑏⟩}

𝑣𝑎 𝑣𝑏nextnext ⇒
opposite

𝑣𝑎 𝑣𝑏

Fig. 16. Topological 2D cut. One simple example for 2D topological cut
(top), which can be entirely inferred from existing topological information
in the half-edge data structure (bottom).

4.3 Cycle ordering of cut-edges
In the algorithm above, the only step that seemingly requires spatial
coordinates is the edge-cycle ordering around vertices. One can of
course apply exact arithmetic, but we can significantly reduce the
cost of plane cutting in Sec. 4.2 by exploiting the following properties.
The line (𝑓 , 𝑝) and 𝐻𝑘 intersect at cut-vertices, which split the line
(𝑓 , 𝑝) into several segments, and only the inner segments cut 𝑓
(see Sec. 3.2). Each inner segment only shares two cut-vertices with
𝐻𝑘 at its two ends. The only difficulty in deducing the order is if one
of the two ends connects more than two half-edges in 𝐻𝑘 . Indeed,
the edge-cycle ordering is uniquely defined from 𝐻𝑘 and its two
ends 𝑣𝑎, 𝑣𝑏 in the following cases:

(a) there are only two half-edges in 𝐻𝑘 adjacent to each of the
two ends, even if there is not a single loop connecting them.

(b) there is only one loop (or equivalence class of “next”) con-
taining both ends, and in this loop, there exists only two
half-edges adjacent to 𝑣𝑎, 𝑣𝑏 .

In practice, most cycle orderings in Sec. 4.2 fall into one of these
two cases, and we can directly infer the next of a cut-edge with-
out resorting to any numerical computation. Such a shortcut only
involves topological information represented by tuples and triples,
and we name it a “topological cut” to distinguish it from the far
more costly “numerical cut”. For the few cases where we cannot use
our topological treatment because the two cases above do not apply,
we revert to exact arithmetic evaluation, see Fig. 17.

4.4 Cut-faces in 𝐻 (𝑓 )
The cut-faces in 𝐻 (𝑓 ) are indeed half-edge loops in 𝐻 (𝑓 ): for each
half-edge ®ℎ in 𝐻 (𝑓 ), we use the next pointer to visit all next half-
edges starting from ®ℎ, and get all starting cut-vertices from them,
which are the boundary-ordered cut-vertices of a cut-face. The
reversed loop is its opposite half-face.

5 CUT-CELL GENERATION VIA HALF-FACES
Having all the cut-faces as well as the half-edge structures 𝐻 (𝑓 )
for each 𝑓 ∈F at hand, it is time to generate the cut-cells that they
bound. The algorithm is very similar to the generation of cut-faces:
we first build the initial half-face structure from all the boundary
cut-faces, then cut the resulting original cell enclosed by the initial
half-face structure recursively by each cut plane. The key is to seek
the “adjacent” face of each cut-face in a cut-cell, so that these two
faces properly form a wedge on an edge of a cut-cell; and of course,
we use face-cycle ordering around cut-edges instead of cut-vertices.

5.1 Adjacent half-face
While the “next” operation in a half-edge data structure is well
known, the “adjacent” operation (see Fig. 19) is unusual, so we
discuss it further before elaborating on our algorithm. Remember
that the “adjacent” operation of a half-face ®𝑓 =−−−−−−→𝑓1 𝑓2 ...𝑓𝑛 is a function

adj( ®𝑓 , 𝑒) : ®F ⊗ E → ®F , (8)
where 𝑒 = (𝑣𝑎, 𝑣𝑏 ), 𝑣𝑎, 𝑣𝑏 ∈ V is part of ®𝑓 . We first orient 𝑒 into
®𝑒 according to the orientation of ®𝑓 , then the oriented cut-edge ®𝑒
defines, through face-cycle ordering around it, the next cut-face
®𝑔 =
−−−−−−−−−−→𝑔1, 𝑔2, ..., 𝑔𝑚 of ®𝑓 . It is then easy to verify that

adj(adj( ®𝑓 , 𝑒), 𝑒) = ®𝑓 . (9)
Consequently, the inherited face normal points towards the outside
of the cell. Next, we show how to bypass cycle-ordering through
topological inference. For example, if a cut-edge is adjacent to only
two cut-faces, the two associated half-faces are obviously adjacent.

𝑣𝑎 𝑣𝑏

(1)

𝑣𝑎 𝑣𝑏

(2)

𝑣𝑎 𝑣𝑏

(3)
𝑣𝑎 𝑣𝑏

(4)
𝑣𝑎

𝑣𝑏

(5)

𝑣𝑎 𝑣𝑏

(6)
Fig. 17. Ambiguous vs. unambiguous 2D topological cuts. Cases (1)
and (2) satisfy condition (a); cases (3) and (4) satisfy condition (b); but cases
(5) and (6) cannot be done through topological cut.
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Fig. 18. Cut-faces on the boundary and on cut planes for the cutting of a
tetrahedron domain (left) and a bumpy-torus domain (right).

⇒

®𝑓𝑎

®𝑓𝑐
®𝑓 ′𝑐

®𝑓𝑏

𝑒

®𝑓𝑎, ®𝑓𝑏 ∈ H𝑘
𝐹
, ®𝑓𝑐 ⊂ 𝑝

adj( ®𝑓𝑐 , 𝑒) = ®𝑓𝑎, adj( ®𝑓𝑎, 𝑒) = ®𝑓𝑐

adj( ®𝑓 ′𝑐 , 𝑒) = ®𝑓𝑏 , adj( ®𝑓𝑏 , 𝑒) = ®𝑓 ′𝑐

opposite( ®𝑓𝑐 ) = ®𝑓 ′𝑐 , opposite( ®𝑓 ′𝑐 ) = ®𝑓𝑐

𝑒
adj

®𝑓𝑎

®𝑓𝑏
Fig. 19. “Adjacent” operation. The adjacent operation is a function of a
half-face and a cut-edge, detailed in this schematic description.

5.2 Initial half-face structure from boundary triangles
The initial half-face structure only includes boundary entities, i.e.,
cut-vertices, cut-edges and cut-faces from the half-edge data struc-
tures 𝐻 (𝑡) created from all the boundary triangles 𝑡 ∈T . All such
entities are encoded by the index of distinct vertices, and remov-
ing duplication is thus simple to achieve. Since the half-edge data
structures created for boundary triangles are consistent with the
(outward) face normals, the original order

−−−−−−→
𝑓1 𝑓2 ...𝑓𝑛 defined by the

“next” operation on a half-edge points outwards too. The opposite of
a boundary half-face is set to ∅, while for inner half-faces generated
in the previous section, it is set to the reversed sequence. Similar to
the half-edge data structure, the “opposite” pointer is irrelevant to
the correctness of the output, but helps with query efficiency.

Given all boundary half-faces and boundary cut-edges, we simply
visit each cut-edge and find its adjacent half-face for all the half-
faces containing this cut-edge. Most cut-edges on the boundary
now have only two adjacent half-faces (on the input boundary), and
we know that they are adjacent to each other without resorting
to any numerical calculation. Only when the cut-edge is on a non-
manifold edge of E do we need to use the face-cycle orders of
adjacent triangles to get the adjacency relationship. The resulting
half-face structure is denoted asH0

𝐹
, representing the input mesh

M cut by all the cut planes.

5.3 Cutting by planes
Beginning with H0

𝐹
, we iteratively cut the current half-face data

structureH𝑘
𝐹
by a cut-plane 𝑝 ∈P, into a “refined” structureH𝑘+1

𝐹
.

We first eliminate the cut-faces in 𝐻 (𝑝) already inH𝑘
𝐹
by checking

its sequence of vertex ids (i.e., triples), then assemble the remaining
cut-faces (denoted F𝑝 here) intoH𝑘

𝐹
. After splitting each cut-face

into a pair of opposite half-faces (remember that each of the two half-
faces has a predefined normal according to 𝐻 (𝑝) with which their
orientation is consistent, and that these two normals are opposite),
the final task is to compute the adjacent face for all related half-faces:

{( ®𝑓 , 𝑒) |𝑓 ∈ F𝑝 ∪H𝑘
𝐹 , 𝑒 ∈ E𝑝 }, (10)

where E𝑝 indicates the cut-edges in F𝑝 . If 𝑒 is not inH𝑘
𝐹
, it is only

adjacent to cut-faces in F𝑝 , and the computation of adjacent half-
face is trivial. If 𝑒 is also inH𝑘

𝐹
, it is at the intersection ofH𝑘

𝐹
and

𝑝 (i.e., F𝑝 ). One can thus use the face-cycle ordering around such
cut-edges to compute the adjacent function for all the related half-
faces in bothH𝑘

𝐹
and F𝑝 . As for the cut-face generation, many of

these face-cycle orderings can be replaced by topological cuts just
as before, without loss of exactness.

Once all the half-faces and associated adjacency are set, we extract
the cut-cells. Similar to the extraction of cut-faces, it is all about
equivalence classes. We say two half-faces ®𝑓 and ®𝑔 are equivalent if
they are adjacent to each other on a shared cut-edge 𝑒 , i.e.,

adj( ®𝑓 , 𝑒) = ®𝑔. (11)

Intuitively, we pick a half-face as a seed and recursively visit all
its adjacent half-faces by pivoting along each of its boundary cut-
edges. All visited half-faces are then the boundary of the cell on the
positive side of the seed half-face.

5.4 Cycle ordering of cut-faces

Between the half-face structureH𝑘
𝐹
and plane 𝑝 , there are common

cut-edges, and these cut-edges split 𝑝 into several 2D sub-regions:
each sub-region has intersectedH𝑘

𝐹
at one or more loops {®ℓ𝑖 } com-

posed by cut-edges. As in the edge-cycle ordering case, there are two
cases that allow us to skip numerical evaluation altogether when
performing the cut:

(a) Only two adjacent half-faces exist in H𝑘
𝐹
for each cut-edge of

loop ®ℓ𝑖 .
(b) There is only one equivalent class inH𝑘

𝐹
containing all the cut-

edges of the loop, and in this equivalent class, there exists only
two adjacent half-faces for each cut-edges of the loop ®ℓ𝑖 .

Obviously, if each intersection loop between H𝑘
𝐹
and 𝑝 satisfies

condition (a) or (b), the insertion is unique, and we call it a 3D
topological cut, see Fig. 20. If a loop satisfies condition (a) and (b),
we can update the adjacent pointer of half-faces inH𝑘

𝐹
and 𝑝 that

are adjacent to cut-edges in the loop; otherwise, we use face-cycle
sorting to find the adjacent half-faces. Once we get the adjacent half-
faces by topological cut or cycle-ordering around common cut-edges
𝑒 ∈ ℓ𝑖 , we can update the adjacent pointer as explained in Fig. 19.
After inserting all cut planes, we get the final half-face structure
H𝐹 . All we have to do is then to extract the equivalence class for
each half-face to get the cut-cells of our domain decomposition.

Fig. 20. Unambiguous vs. ambiguous 3D topological cuts. The left-side
example satisfies condition (a), the middle one satisfies condition (b), but
the example on the right side does not satisfy any of these two conditions,
and thus requires a full numerical treatment. Blue loops are the intersection
lines between the cut plane (light blue) and the current half-face structure.
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Fig. 21. Tetwild dataset. Distribution of the Euler characteristic for our
input meshes from [Hu et al. 2018].

Fig. 22. RockerArmandCastmeshes. Left: domains shaped as RockerArm
and Caster meshes, with axis-aligned cuts; right: same for arbitrary cuts.

6 RESULTS
In order to show robustness and efficiency of our method, we tested
our implementation on a large number of models from TetWild [Hu
et al. 2018] and compared our TopoCut method withMandoline [Tao
et al. 2019], libigl [Panozzo and Jacobson 2019] andVolumeMesher [Di-
azzi and Attene 2021] whose codes are available. Additional re-
sults are also included in the supplemental material. For complete-
ness, we provide our implementation as an open-source library at
https://xzfang.top/topocut.

Dataset. Based on the output tetrahedral meshes of TetWild [Hu
et al. 2018], we extract their boundaries to get a total of 9841 triangle
meshes. These meshes are very diverse, both in complexity and
genus (see their Euler characteristic distribution in Fig. 21). For
instance, the triangle mesh in Fig. 23 is a high-genus case.

Cut planes. We tested mostly two types of mesh cutting scenarios:
one where the cut planes are uniform spaced in the bounding box
as in the typical cut-cell mesh generation (we will refer to this case
as the 𝑛×𝑛×𝑛 case (or “A𝑛”) to indicate that there are 𝑛 cut planes
perpendicular to each axis); and one where arbitrary planes are
generated by randomly choosing pairs (n𝑝 , 𝑑𝑝 ) (we will refer to this
case as “R𝑛”). In Fig. 22, the left two examples use axis-aligned cut
planes, the right two examples use random cut planes.

Line sorting speedup. To speed up our line sorting, we adopt an
adaptive approach: we use floating-point numbers to perform coarse
sorting, then use exact numerical calculation for fine sorting when
the distance between two adjacent cut-vertices is smaller than 10−3

times the average edge length of the input triangle mesh.

Output. The connectivity information of the resulting volumetric
decomposition is now easily extracted from the constructed half-
edge and half-face structures: our method outputs the cut mesh
through a set of polyhedra formed by several boundary polygons,
and a set of coordinates for the cut-vertices that are represented by
triples of triangles/planes indices.

6.1 Post-processing for downstream applications
Cut-faces and cut-cells with multiple boundaries. As mentioned

in Sec. 4.4, a cut-face is an oriented boundary loop, which is as-
sociated to an oriented plane or an oriented boundary triangle
(see Fig. 15). When the corresponding normals are opposite, the

Table 2. Self-intersection testing statistics. First row indicates the ratio
of results without self-intersection for each type of cutting scenario for the
dataset tests, where A𝑛 refers to 𝑛×𝑛×𝑛 grid cuts while R𝑛 indicates the
use of 𝑛 arbitrary cuts.

A5 A10 A20 R10 R20 R30 R100
Ours 95.1% 98.3% 98.4% 100% 99.99% 99.98% 99.98%
Mandoline <92% <84% <76% n/a n/a n/a n/a

cut-face is in fact a “hole” rather
than a “solid” (see the inner cylin-
der boundary in inset) as already
discussed in Sec. 2.2. In case the
output mesh should use cut-faces only as “solid” planar regions, one
can easily add an inner cut line in order to join two boundaries into
a single one — possibly repeatedly if there are more than one hole.
The added inner line cuts will guarantee that each cut-face has only
one boundary which encloses a solid region. The same principle
applies to cut-cells: the boundary of a cut-cell is an oriented water-
tight polyhedron composed of a set consistently oriented half-faces.
If the half-faces form a “void” (i.e., a negative volume, when all
of its half-faces come from voids in the input mesh), one can use
ray-casting to find the first solid boundary enclosing it; then, this
solid boundary and all the inner void boundaries form a solid cell.

Floating-point coordinates. While our approach uses triples of
faces to refer to a cut-vertex, one may need to embed the final cut
mesh to use it as an input for fluid simulation or any other down-
stream application. While we can easily use rational or arbitrary-
precision floating-point numbers [GMP 2021] without affecting the
validity of the resulting cut mesh, the use of 32-bit or 64-bit floating-
point coordinates is often needed in standard geometry processing
libraries. However, directly converting rational coordinates into
floating-point ones can result in both degenerate elements and self-
intersections due to this vertex rounding [Milenkovic and Nackman
1990; Fortune 1997]: our topological data structure is no longer
matching the topology of this rounded-coordinate embedding. The-
oretically, one can perform a conversion from rational coordinates to
doubles which prevents degeneracy (in the sense of length, area and
volume respectively) and self-intersection by enforcing the proper
vertex-vertex (line-order) and vertex-face (Eq. (13)) orders: the final
embedding of all cut-vertices {𝑣𝑖 } can be found by minimizing the
sum of their squared distances to their associated positions {𝑣∗

𝑖
}

directly obtained via forceful casting from rational coordinates to
double coordinates, subject to preserving all the orders along cut-
lines and all sidedness of cut-vertices with respect to cut-faces. It
should be noted that after rounding, vertices of a planar polygon
may not be co-planar anymore, which will require to change the for-
mal definition of a face or of the vertex-vertex order along a line to
account for the added perturbation. However, such an optimization
can be time-consuming due to the number of constraints to check.
We thus employ a heuristic instead: we first convert all coordinates
from rational representation to double floating-point representation;
then, for each intersection line, we get its normalized direction 𝑡 in
double representation using the beginning and the end points on
it. Then, we sweep through the points along the line to verify their
order by checking that (𝑣𝑖+1−𝑣𝑖 ) ·𝑡 > 0; if a vertex 𝑣𝑖+1 fails this
test, we update its coordinates by displacing them along 𝑡 by the
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Fig. 23. Robustness to high genus. A high genus input mesh with 5×5×5 and 10×10×10 cuts, and with 10 and 20 random cuts.

smallest double floating-point change that satisfies the ordering test.
In most cases, no displacement is even needed. We then consider the
vertex-face orders: for each vertex, we check all the near faces; if one
inequality constraint is not satisfied, we move the vertex position
along the face normal until the constraint is satisfied. In a few cases,
these local checks will not necessarily lead to a proper global em-
bedding, unfortunately; but we will demonstrate in Sec. 6.4 that this
simple heuristic already outperforms existing approaches relying on
64-bit floating-point coordinates, since we only incur errors during
this final projection instead of accumulating numerical errors during
ordering operations, which can lead to dramatic failures (Fig. 26).

6.2 Robustness and correctness
In the nearly 10K triangle meshes we tried, we never failed to gen-
erate the final half-face structure of the expected cut-mesh, see
Fig. 29 and Tab. 4. We confirmed that the Euler characteristics for
all input meshes match the ones of our output cut-meshes match.
We also calculated the volume of the input triangle meshes vs. our
output cut-meshes embedded using floating-point coordinates (ei-
ther through direct conversion from rational coordinates or through
the heuristic presented in Sec.6.1), and the average relative error
was always smaller than 10−4. Finally, we provide statistics of cell
volumes over all the cutting tests we made in Tab. 3.
Table 3. Volume statistics. With A𝑛 referring to 𝑛×𝑛×𝑛 grid cuts and R𝑛
indicating 𝑛 arbitrary cuts, we show the average minimum and maximum
cell volumes after cutting all the models in the dataset.

cut type A5 A10 A20 A50 R10 R20 R30 R100
min vol. 3.9e-4 1.3e-5 8.5e-7 2.6e-8 3.9e-5 2.3e-6 1.8e-7 8.7e-9
max vol. 4.6e-2 6.7e-3 9.8e-4 1.2e-4 0.19 0.10 0.065 0.013

6.3 Performance
All our tests were run on a PC with an Intel Xeon® W-2255 CPU
and 64GB RAM. We provide in Fig. 24 (top) the computational time
for the cutting of a domain by different choices of cut-planes, each
averaged over the entire dataset. Note that our timings include the
post-processing steps as well, involving rounding and adjustment
of coordinates of cut-vertices, the connection of multi-boundary
cut-faces, and the triangulation of cut-faces. We also profiled the
cutting process by timing each step, see Fig. 24 (bottom). Finally,
it is worth mentioning than when performing axis-aligned cuts,
we do not leverage the prior knowledge that planes are parallel
or orthogonal to each others; so the difference in execution time
between regular cuts and arbitrary cuts is virtually nonexistent
(modulo mesh-specific properties).

A5 A10 A20 A50 R10 R20 R30 R100
0
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3
4

0.24 0.35
0.78

3.73
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Average cutting times (in seconds) for different cuts

Tu&Tr LS 𝐻&H𝐹 MB Round Trian Other
0
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30
40
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Time percentage for each step

Fig. 24. Computational efficiency. Top: our computational time averaged
over the whole dataset for different cutting planes, where R𝑛 indicates the
use of 𝑛 arbitrary cuts while A𝑛 refers to 𝑛×𝑛×𝑛 grid cuts. Down: Profiling
each step: computation of tuples and triples (Tu&Tr), line sorting (LS), half-
edge and half-face structure (𝐻&H𝐹 ) generation, multi-boundary cut-face
post-processing (MB), rounding & adjustment of cut-vertices (Round), tri-
angulation of cut-faces (Trian) and other.

Numerical sorting vs. topological sorting. In practice, our topo-
logical cut idea induces a surprisingly huge boost in performance.
To understand why, we counted the number of cut-vertices and
cut-edges that needed numerical cycle-sorting evaluation because
topological cutting was ambiguous, compared to the total number
of cycle-sorting evaluations that would have been needed without
TopoCut. As shown in the histogram in Fig. 25, very few domains
require numerical evaluation for cycle ordering. In fact, when using
5×5×5 cut planes, there are 8, 158 input meshes among the 9,841
meshes of the dataset that do not need numerical sorting for cut-
vertices at all, and 7, 858 input meshes that do not need numerical
sorting for cut-edges at all. Because the topological sorting only in-
volves the opposite and next operations in the half-edge or half-face
data structure, the computational cost of a topological cut is mar-
ginal compared to the numerical cycle-sorting version, explaining
our improved performance.

6.4 Comparisons
Using the nearly 10K-mesh dataset, we compare our method with
the multithreaded implementation of Mandoline provided by the
authors for 10 threads in Fig. 30. As mentioned before, we do not use
any prior on the planes being axis aligned. On average, our method
achieves a speed-up factor of two to three, see Fig. 28. Moreover,
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while it claims “experimental robustness”, Mandoline can fail in prac-
tice on fairly simple input meshes due to their use of floating-point
arithmetic. As shown in Fig. 26, the staircase triangle mesh is cut by
three different set of axis-aligned cut planes (4×4×4, 5×5×5, and 6×6×6
respectively) covering exactly the bounding box of the input mesh
(and thus creating a slew of degenerate cases); Mandoline succeeds
on the first two, but fails on the middle one: their approach uses fast
numerical evaluations that often provide correct results, but do not
guarantee correctness. Fig. 27 shows another case where Mandoline
returns incomplete cells or improperly includes outside elements as
the connectivity information is incorrect, due to inaccurate cycle
sorting. Finally, we also show in Tab. 2 that after embedding our
results using floating-point coordinates, our results also contain
far less self-intersecting outputs as tested by Cinolib [Livesu 2019]
after triangulating all the cut-faces into triangles without adding
any new vertex: when cutting using a 10×10×10 grid for instance,
our approach has only 167 self-intersecting meshes, while Mando-
line has 1,600+ self-intersecting meshes out of 9,841 input meshes.
We also compare TopoCut with the state-of-the-art mesh boolean
method VolumeMesher [Diazzi and Attene 2021] using their own
code to process 𝑛×𝑛×𝑛 grid cuts. Fig. 30 shows various performance
comparisons for axis-aligned cut planes, showing that we improve
on VolumeMesher by an average factor of three for 5×5×5 grid cuts,
and a factor of five on 10×10×10 grid cuts in efficiency. Finally, we
compare TopoCut with the mesh boolean method of [Zhou et al.
2016] implemented in libigl [Panozzo and Jacobson 2019], and our
tests show that TopoCut is about an order of magnitude faster.

7 CONCLUSIONS
Cutting a complex domain by arbitrary planes efficiently is chal-
lenging: for the sake of efficiency, numerical approximations that
cannot guarantee correctness or robustness are too often used. In
this paper, we construct the geometric elements of a generalized
cut-cell mesh in a bottom-up fashion, and carefully use topological
information already gathered earlier to replace most of the exact
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Fig. 25. Topological vs. Numerical Cuts. In this histogram, we eval-
uate the frequency of 2D or 3D topological cuts vs. numerical ordering
around cut-vertices or cut-edges. Left: Horizontal axis represents the ratio
of numerically-sorted cut-vertices, and the vertical axis is the number of
triangle meshes. Right: same histograph, but for cut-edges this time.

Fig. 26. Staircase triangle mesh. Left to right: For a staircase domain (left),
we use 4×4×4, 5×5×5 and 6×6×6 grid cuts. Mandoline fails sometimes
(top), while our approach always outputs the correct cut-cell meshes.

Fig. 27. Simple fail case for Mandoline. Left to right: input triangle mesh,
the result of Mandoline, and our result using the same set of cut planes.

Table 4. Statistics for the domain cutting examples shown in this paper.
model |V | | T | | P | |V | | E | | F | | C | T(sec) | P | |V | | E | | F | | C | T(sec)
armadillo 21k 43k 15 26094 73565 47648 60 0.531 10 25616 72602 47142 41 0.438
block 2k 4k 15 3827 9510 5852 64 0.077 10 3663 9240 5744 80 0.0728
bumpySphere 6k 11k 15 8353 22282 14093 65 0.15 10 8310 22223 14073 71 0.131
bumpyTorus 17k 34k 15 21961 60559 38779 60 0.343 10 21949 60607 38852 102 0.351
bunnyBotsch 55k 111k 15 62548 180596 118211 52 1.203 10 62012 179490 117636 40 1.205
carter 30k 60k 15 41747 113897 72832 468 0.888 10 35336 100503 65305 28 0.599
cast 20k 40k 15 25345 70543 45352 50 0.448 10 24592 69028 44587 47 0.436
dragonstand 52k 104k 15 60632 173267 112828 77 0.89 10 59524 171037 111695 64 0.914
elephant 25k 50k 15 30121 85013 55068 61 0.487 10 30927 86644 55889 63 0.485
gearbox 64k 128k 15 75977 216400 140480 65 1.346 10 71167 206747 135604 42 1.176
rockerArm 10k 20k 15 13741 37352 23783 57 0.222 10 13572 37052 23650 72 0.229
siggraph 20k 40k 15 30428 80810 50558 92 0.553 10 28543 77007 48653 99 0.484

arithmetic computations while still guaranteeing the same construc-
tion — an approach that we called topological cutting. Experimental
results show that topological cuts are surprisingly ubiquitous in
practice, with only a small percentage of exact arithmetic computa-
tions needed as a fallback solution in case of topological ambiguity.
Moreover, TopoCut applies to arbitrary cuts instead of only the
typical axis-aligned cuts to which most of the existing libraries are
restricted. Despite this added generality, we outperform all state-of-
the-art approaches for axis-aligned cut-cell mesh generation.

Limitations. One main limitation of our work, common to all
previous works which are not using exact arithmetic systemat-
ically, is that the conversion of the index triples of cut-vertices
into floating-point coordinates cannot guarantee the absence of
self-intersection when assuming straight-boundary face and cells.
Developing a better heuristic or guaranteed projection to double-
precision coordinates may require a better strategy to enforce the
topological conditions we mentioned, or even relaxing the exact
straightness of the cutting planes and cut-lines.

Future work. Besides a better final embedding of our results to
guarantee exactness, we point out that our approach is sharply dif-
ferent from previous approach as we do not rely on the straightness
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Fig. 28. Efficiency comparisons. Histograms show binning of
acceleration factors with respect to [Tao et al. 2019] (i.e., Tim-
ing(Mandoline)/Timing(TopoCut)), [Diazzi and Attene 2021] and [Zhou
et al. 2016], where the vertical axis indicates the input model counts for
which this factor is achieved.

Fig. 29. Cutting Zoo. A few selected results of our method for axis-aligned
and arbitrary cuts, see Tab. 4 for details.

of the cuts. It would thus be interesting to see if we can extend our
algorithm to curved cuts: if the cuts remain 2-manifold and their
pairwise intersections remain 1-manifold, TopoCut should still ap-
ply — as long as the computations of cut-vertices do not become
overly expensive. It may also help to extend this idea to more general
Boolean operations involving curved lines/faces.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their comments
and suggestions. Most of models we used for testing are originally

Fig. 30. Performance comparisons. Log-log plot showing computational
times for VolumeMesher (red), Mandoline (green), libigl (purple), and
TopoCut (blue) as a function of triangle count for various models of TetWild.

from Thingiverse (right of Fig. 1, Fig. 23), Stanford Scanning Repos-
itory (Bunny, Armadillo, Dragon) and AIM@SHAPE Repository
(Figs. 10, 22 and 29). J. Huang was supported by National Key R&D
Program of China (No. 2020AAA0108901) and Zhejiang Provincial
Science and Technology Program in China under Grant 2021C01108.
X. Fang acknowledges support from Zhejiang Provincial Natural
Science Foundation of China under Grant No. LQ22F020025, and
the Open Project Program of the State Key Lab of CAD&CG (Grant
No. A2201), Zhejiang University. MD acknowledges the generous
support of a Choose France Inria chair, and of Ansys, Inc.

REFERENCES
M. J. Aftosmis, M. J. Berger, and J. E. Melton. 1998. Robust and Efficient Cartesian Mesh

Generation for Component-Based Geometry. AIAA Journal 36, 6 (1998), 952–960.
https://doi.org/10.2514/2.464

Marco Attene. 2020. Indirect Predicates for Geometric Constructions. Computer-
Aided Design 126 (2020), 102856. https://www.sciencedirect.com/science/article/
pii/S001044852030049X

Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. 2016. Preserving
Geometry and Topology for Fluid Flows with Thin Obstacles and Narrow Gaps.
ACM Trans. Graph. 35, 4, Article 97 (July 2016), 12 pages.

Chandrajit L. Bajaj and Valerio Pascucci. 1996. Splitting a Complex of Convex Polytopes
in AnyDimension. In Proceedings of the Twelfth Annual Symposium on Computational

ACM Trans. Graph., Vol. 41, No. 4, Article 40. Publication date: July 2022.

https://doi.org/10.2514/2.464
https://www.sciencedirect.com/science/article/pii/S001044852030049X
https://www.sciencedirect.com/science/article/pii/S001044852030049X


40:14 • Fang, X. et al.

Geometry (SCG ’96). Association for Computing Machinery, New York, NY, USA,
88–97.

Gilbert Bernstein and Don Fussell. 2009. Fast, Exact, Linear Booleans. Computer
Graphics Forum 28, 5 (2009), 1269–1278.

Marcel Campen and Leif Kobbelt. 2010. Exact and Robust (Self-)Intersections for
Polygonal Meshes. Computer Graphics Forum 29, 2 (2010), 397–406.

CGAL. 2021. CGAL - Computational Geometry Algorithms Library. https://www.cgal.
org

Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene. 2020. Fast and
Robust Mesh Arrangements Using Floating-Point Arithmetic. ACM Trans. Graph.
39, 6, Article 250 (Nov. 2020), 16 pages.

Olivier Devillers, Sylvain Lazard, and William J. Lenhart. 2018. 3D Snap Rounding.
In 34th International Symposium on Computational Geometry (SoCG 2018) (Leibniz
International Proceedings in Informatics (LIPIcs)), Bettina Speckmann and Csaba D.
Tóth (Eds.), Vol. 99. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 30:1–30:14.

Lorenzo Diazzi and Marco Attene. 2021. Convex Polyhedral Meshing for Robust Solid
Modeling. ACM Trans. Graph. 40, 6, Article 259 (dec 2021), 16 pages.

Essex Edwards and Robert Bridson. 2014. DetailedWater with Coarse Grids: Combining
Surface Meshes and Adaptive Discontinuous Galerkin. ACM Trans. Graph. 33, 4,
Article 136 (July 2014), 9 pages.

F.R. Feito and J.C. Torres. 1997. Inclusion test for general polyhedra. Computers &
Graphics 21, 1 (1997), 23 – 30.

Steven Fortune. 1997. Vertex-Rounding a Three-Dimensional Polyhedral Subdivision.
Discrete Comput. Geom 22 (1997), 116–125.

GMP. 2021. GMP - The GNU Multiple Precision Arithmetic Library. https://gmplib.org
Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages.

J. Jaśkowiec, P. Pluciński, and A. Stankiewicz. 2016. Discontinuous Galerkin method
with arbitrary polygonal finite elements. Finite Elements in Analysis and Design 120
(2016), 1 – 17.

Yehuda E Kalay. 1982. Determining the spatial containment of a point in general
polyhedra. Computer Graphics and Image Processing 19, 4 (1982), 303 – 334.

Marco Livesu. 2019. Cinolib: A Generic Programming Header Only C++ Library for
Processing Polygonal and Polyhedral Meshes. Springer Berlin Heidelberg, Berlin,
Heidelberg, 64–76.

Matthias Meinke, Lennart Schneiders, Claudia Günther, and Wolfgang Schröder. 2013.
A cut-cell method for sharp moving boundaries in Cartesian grids. Computers &
Fluids 85 (2013), 135 – 142. International Workshop on Future of CFD and Aerospace
Sciences.

V. J. Milenkovic and L. R. Nackman. 1990. Finding compact coordinate representations
for polygons and polyhedra. IBM Journal of Research and Development 34, 5 (1 Jan.
1990), 753–769.

Julius Nehring-Wirxel, Philip Trettner, and Leif Kobbelt. 2021. Fast Exact Booleans
for Iterated CSG using Octree-Embedded BSPs. Computer-Aided Design 135 (2021),
103015.

OpenMesh. 2021. OpenMesh - A generic and efficient polygon mesh data structure.
https://www.openmesh.org

OpenVolumeMesh. 2021. OpenVolumeMesh - A Generic and Versatile Index-Based
Data Structure for Polytopal Meshes. https://www.openvolumemesh.org

Daniele Panozzo and Alec Jacobson. 2019. libigl: Prototyping Geometry Processing
Research in C++. In Eurographics 2019 - Tutorials, Wenzel Jakob and Enrico Puppo
(Eds.). The Eurographics Association. https://doi.org/10.2312/egt.20191037

Taylor Patterson, Nathan Mitchell, and Eftychios Sifakis. 2012. Simulation of Complex
Nonlinear Elastic Bodies Using Lattice Deformers. ACM Trans. Graph. 31, 6, Article
197 (2012), 10 pages.

Jonathan R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates. Discrete Comput. Geom. 18, 3 (1997), 305–363.

Eftychios Sifakis, Kevin G. Der, and Ronald Fedkiw. 2007. Arbitrary Cutting
of Deformable Tetrahedralized Objects. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’07). Eurographics
Association, Goslar, DEU, 73–80.

Michael Tao, Christopher Batty, Eugene Fiume, and David I. W. Levin. 2019. Mandoline:
Robust Cut-cell Generation for Arbitrary Triangle Meshes. ACM Trans. Graph. 38,
6, Article 179 (Nov. 2019), 17 pages.

Charlie C. L. Wang and Dinesh Manocha. 2013. Efficient Boundary Extraction of
BSP Solids Based on Clipping Operations. IEEE Transactions on Visualization and
Computer Graphics 19, 1 (Jan. 2013), 16–29.

Chee K. Yap and Vikram Sharma. 2008. Robust Geometric Computation. Springer US,
Boston, MA, 788–790.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrange-
ments for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (July 2016), 15 pages.

A INPUT CONDITION
When the meshM has no duplicated vertices, it is called free of
self-intersection if:

∀𝑒 ∈ E, 𝑡 ∈ T , 𝑒 ∩ 𝑡 = ∅ or 𝑒 ∩ 𝑡 = 𝑒 or 𝑒 ∩ 𝑡 = vert(𝑒) ∩ vert(𝑡) .

That is, for all pairs made of an edge and a triangle, they are separate,
or intersecting, or the edge is one of the boundary edge of the
triangle, or they share a common vertex. Otherwise, self-intersection
is present.

B TUPLES AND TRIPLES GENERATION
For completeness, we provide implementation details about tuples
and triples generation next.

Tuples of (T ,T). For two triangles, 𝑡𝑖 , 𝑡 𝑗 ∈ T , (𝑡𝑖 , 𝑡 𝑗 ) ∈ (T ,T) if
𝑡𝑖 ∩ 𝑡 𝑗 ∈ E.

Tuples of (P,P). In order to generate (P,P) easily, we com-
pute a function 𝑇𝑝𝑝 such that for two given planes 𝑝𝑖 (n𝑖 , 𝑑𝑖 ) and
𝑝 𝑗 (n𝑗 , 𝑑 𝑗 ) ∈ P, and with s𝑖 𝑗 = sign(n𝑖 × n𝑗 ), 𝑠𝑑 = sign((𝑑 𝑗n𝑖 −
𝑑𝑖n𝑗 )𝑇n𝑖 ), we define

𝑇𝑝𝑝 (𝑝𝑖 , 𝑝 𝑗 )=


∅, s𝑖 𝑗 =0, 𝑠𝑑 ≠ 0 (Parallel),
⊟, s𝑖 𝑗 ≠0 (Intersected),
■, s𝑖 𝑗 =0, 𝑠𝑑 =0 (Coplanar) .

(12)

Then trivially, (𝑝𝑖 , 𝑝 𝑗 ) ∈ (P,P) if 𝑇𝑝𝑝 (𝑝𝑖 , 𝑝 𝑗 )=⊟.

Tuples of (T ,P). In order to generate (T ,P), we define a function
𝑇𝑝𝑣 dependent on the relation between input verticesV and input
cut planes P: given a plane 𝑝 ∈ P and a vertex 𝑣 ∈ V , define

𝑇𝑝𝑣 (𝑝, 𝑣) = sign(n𝑇
𝑝𝑣 + 𝑑𝑝 ) ∈ {−1, 0, 1}. (13)

Here, 𝑇𝑝𝑣 (𝑝, 𝑣) =0 means 𝑣 ∈ 𝑝 , i.e., 𝑣 is on the plane 𝑝; a value of
1 means instead that 𝑣 is on top of the plane, and −1 means that
𝑣 is under the plane. By using 𝑇𝑝𝑣 , we also can easily deduce the
relationship 𝑇𝑝𝑡 between T and P: given 𝑡 ∈ T and 𝑝 ∈ P,

𝑇𝑝𝑡 (𝑝, 𝑡 (𝑣𝑖 ,𝑣 𝑗 ,𝑣𝑘 ) ) =


∅, 𝑇𝑝𝑣 (𝑝, 𝑣𝑖 ) =𝑇𝑝𝑣 (𝑝, 𝑣 𝑗 ) =𝑇𝑝𝑣 (𝑝, 𝑣𝑘 ) ≠0,
⊡, |𝑇𝑝𝑣 (𝑝, 𝑣𝑖 ) +𝑇𝑝𝑣 (𝑝, 𝑣 𝑗 ) +𝑇𝑝𝑣 (𝑝, 𝑣𝑘 ) | =2,
■, 𝑇𝑝𝑣 (𝑝, 𝑣𝑖 ) =𝑇𝑝𝑣 (𝑝, 𝑣 𝑗 ) =𝑇𝑝𝑣 (𝑝, 𝑣𝑘 ) =0,
⊟, otherwise.

(14)

Here, ∅ means 𝑝 ∩ 𝑡 = ∅, ⊡ means that 𝑝 ∩ 𝑡 is one point, ⊟ means
that 𝑝 ∩ 𝑡 is a line, while ■ means 𝑡 ⊂ 𝑝 . Thus, when 𝑇𝑝𝑡 (𝑝, 𝑡) = ⊡
or ⊟, we know that (𝑡, 𝑝) ∈ (T ,P).

Triples of (T ,T ,T). We do not need to construct these triples ex-
plicitly because they are just the input vertices! For each vertex, any
three different adjacent triangles contribute a triple in (T ,T ,T).

Triples of (P,P,P). If 𝑇𝑝𝑝 (𝑝𝑖 , 𝑝 𝑗 ) =𝑇𝑝𝑝 (𝑝 𝑗 , 𝑝𝑘 ) =𝑇𝑝𝑝 (𝑝𝑘 , 𝑝𝑖 ) =
⊟ and sign(n𝑖 × n𝑗 · n𝑘 ) ≠ 0, then we can directly deduce that
(𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑘 ) ∈ (P,P,P).

Triples of (T ,T ,P). Before constructing such triples, we intro-
duce a function 𝑇𝑝𝑣 to check how a cut plane 𝑝 ∈P intersects with
an input edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) ∈ E shared by two boundary triangles and
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with vertices 𝑣𝑖 , 𝑣 𝑗 :

𝑇𝑝𝑒 (𝑝, 𝑒 (𝑣𝑖 , 𝑣 𝑗 )) =


∅, 𝑇𝑝𝑣 (𝑝, 𝑣𝑖 )=𝑇𝑝𝑣 (𝑝, 𝑣 𝑗 ) ≠ 0,
⊟, 𝑇𝑝𝑣 (𝑝, 𝑣𝑖 )=𝑇𝑝𝑣 (𝑝, 𝑣 𝑗 )=0,
⊡, otherwise.

(15)

Thus, ∀𝑡𝑎, 𝑡𝑏 ∈ T such that 𝑡𝑎 ∩ 𝑡𝑏 = 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) ∈ E, then for any
plane 𝑝 ∈ P, if𝑇𝑝𝑒 (𝑝, 𝑒 (𝑣𝑖 , 𝑣 𝑗 )) = ⊡, then we know that (𝑡𝑎, 𝑡𝑏 , 𝑝) ∈
(T ,T ,P).

Triples of (P,P,T). Given two planes 𝑝𝑖 and 𝑝 𝑗 that satisfy
𝑇𝑝𝑝 (𝑝𝑖 , 𝑝 𝑗 )=⊟, a boundary triangle 𝑡 contributes a triple of (P,P,T)
in the following three cases:

• (𝑇𝑝𝑡 (𝑝𝑖 , 𝑡) =⊡,𝑇𝑝𝑣 (𝑝 𝑗 , 𝑝𝑖 ∩ 𝑡) = 0): the plane 𝑝𝑖 intersects 𝑡 just
on a corner vertex 𝑣 , and 𝑣 is on plane 𝑝 𝑗 ;

• (𝑇𝑝𝑡 (𝑝 𝑗 , 𝑡)=⊡,𝑇𝑝𝑣 (𝑝𝑖 , 𝑝 𝑗 ∩ 𝑡)=0): Similar to the above case;

• (𝑇𝑝𝑡 (𝑝𝑖 , 𝑡) =𝑇𝑝𝑡 (𝑝 𝑗 , 𝑡) =⊟, 𝑝𝑖∩𝑝 𝑗 ∩𝑡 ≠∅, 𝑝𝑖∩𝑡 ≠𝑝 𝑗 ∩𝑡): the two
intersection lines from (𝑝𝑖 , 𝑡) and (𝑝 𝑗 , 𝑡) just intersect at a single
point in 𝑡 .

In the above equations, we used the fact that if 𝑇𝑝𝑡 (𝑝𝑖 , 𝑡)=⊡, then
𝑝𝑖 ∩ 𝑡 must be a vertex of the input mesh. Given the values of
𝑇𝑝𝑣,𝑇𝑝𝑡 , the first two cases are easy. The last case involves a bit
more computation. Giving planes 𝑝𝑖 (n𝑖 , 𝑑𝑖 ) and 𝑝 𝑗 (n𝑗 , 𝑑 𝑗 ) and a
triangle 𝑡 (𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 ), every point in 𝑡 can be parameterized by _1, _2
as 𝑥 = (𝑣𝑏 − 𝑣𝑎, 𝑣𝑐 − 𝑣𝑎) (_1, _2)𝑇 + 𝑣𝑎 , where 0 ≤ _𝑖 , _1 + _2 ≤ 1. If
a point 𝑥 (_1, _2) is on both planes n𝑇

𝑖
𝑥 + 𝑑𝑖 = 0, n𝑇

𝑗
𝑥 + 𝑑 𝑗 = 0, we

have
𝑀 (_1, _2)𝑇 = 𝑏,

where𝑀 = (n𝑖 , n𝑗 )𝑇 (𝑣𝑏−𝑣𝑎, 𝑣𝑐−𝑣𝑎), 𝑏 = −(𝑑𝑖 + n𝑇

𝑖
𝑣𝑎, 𝑑 𝑗 + n𝑇

𝑗
𝑣𝑎)𝑇 .

When |𝑀 | = 0, there exists more than one intersection point or
no intersection. Otherwise, we check whether the point is in the
triangle. In short, (𝑝𝑖 , 𝑝 𝑗 , 𝑡) contributes such a triple if and only if:

|𝑀 | ≠ 0, and _1, _2, _1 + _2 ∈ [0, 1] .

Exact arithmetic is used to solve this 2 × 2 linear system.

n𝑝 𝑇𝑝𝑣 =1

𝑇𝑝𝑣 =0

𝑇𝑝𝑣 =−1

𝑇𝑝𝑝 =⊟

𝑇𝑝𝑒 =∅

𝑇𝑝𝑒 =⊡

𝑇𝑝𝑒 =⊟
𝑇𝑝𝑡 =∅

𝑇𝑝𝑡 =⊡

𝑇𝑝𝑡 =⊟

𝑇𝑝𝑡 =■

Fig. 31. Intersection relations between input data.

C SWITCH FUNCTION
Below, we introduce how to calculate 𝑠 (𝑣) on the directed intersec-
tion line ®ℓ (ℓ = 𝑝𝑖 ∩ 𝑝 𝑗 ) for the three cases in Fig. 32. After merging
duplicated triples, we easily know whether one cut-vertex is on the
triangle, edge and vertex of the input mesh, which will be helpful
to compute 𝑠 (𝑣).

Passing triangle. When 𝑣 ∈ 𝑡 ∈ T , 𝑣 ∉ 𝜕𝑡 , define the normal of 𝑡
as n𝑡 , if sign(n𝑇

𝑡
®ℓ) = 0, 𝑠 (𝑣) = 0, otherwise

𝑠 (𝑣) = 1. (16)

Passing edge. If 𝑒 is an edge with only two adjacent triangles, and
𝑣 ∈ 𝑒 = 𝑡𝑖 ∩ 𝑡 𝑗 ∈ E, 𝑣 ∉ 𝜕𝑒 , given 𝑡𝑖 = (𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 ), 𝑡 𝑗 = (𝑣𝑎, 𝑣𝑑 , 𝑣𝑏 ),
®𝑒 = ⟨𝑣𝑎, 𝑣𝑏⟩, define n𝑖 = (𝑣𝑏 − 𝑣𝑎) × (𝑣𝑐 − 𝑣𝑎), n𝑗 = (𝑣𝑑 − 𝑣𝑎) ×
(𝑣𝑏 − 𝑣𝑎), 𝐷𝑖 𝑗 = sign(n𝑇

𝑖
®ℓ)sign(n𝑇

𝑗
®ℓ), 𝑟 = sign((𝑣𝑏 − 𝑣𝑎)𝑇 (n𝑖 ×n𝑗 )).

If 𝑒 ⊂ ℓ , 𝑠 (𝑣) = 0; otherwise, we formulate 𝑠 (𝑣) as below

𝑠 (𝑣, 𝑡𝑖 , 𝑡 𝑗 ) =
{1 if 𝐷𝑖 𝑗 > 0 ∨ (𝐷𝑖 𝑗 = 0, 𝑟 < 0),
0 if 𝐷𝑖 𝑗 < 0 ∨ (𝐷𝑖 𝑗 = 0, 𝑟 ≥ 0) . (17)

When 𝑒 is a non-manifold edge on the boundary, we need to check
all its adjacent triangles. We can classify the adjacent triangles
into several subsets, each subset has two triangles 𝑡𝑖 , 𝑡 𝑗 , which are
adjacent within the domain, i.e. the region between 𝑡𝑖 and 𝑡 𝑗 is inside
Ω. We check each subset with this relation, then get the sum of them
to deduce:

𝑠 (𝑣) = ©«
∑︁

{𝑡𝑖 ,𝑡 𝑗 }⊂N𝑡 (𝑒 )
𝑠 (𝑣, 𝑡𝑖 , 𝑡 𝑗 )

ª®¬mod 2. (18)

Here, {𝑡𝑖 , 𝑡 𝑗 } are adjacent in the interior of Ω.

Passing vertex. When 𝑣 ∈ V , we can work directly in 2D instead.
We choose a plane 𝑝𝑖 as the 2D domain, and the adjacent region of
𝑣 in 𝑝𝑖 is split by adjacent cut-edges from (T ,P). The adjacent cut-
edges E𝑣 are obtained from the intersection lines between adjacent
triangles and 𝑝𝑖 . We set the direction of each cut-edge in E𝑣 starting
from 𝑣 , and define the set of their directions as ®E𝑣 . Then we sort ®E𝑣
clockwise along n𝑝𝑖 (cycle sorting) and get ®E′𝑣 = {®𝑒1, ®𝑒1, ...}. Then
we check whether ®ℓ and −®ℓ pass inside the region between ®𝑒𝑖 and
®𝑒𝑖+1, each fan region belongs to Ω−, 𝜕Ω or Ω+ which is determined
by adjacent triangles (in fact, each edge is related to tuple (𝑝𝑖 , 𝑡)).
If ®ℓ passes one fan region in Ω− and −®ℓ not, or −®ℓ passes one fan
region in Ω− and ®ℓ does not, then 𝑠 (𝑣) = 1; otherwise, 𝑠 (𝑣) = 0.

Fig. 32. Intersection between triangles and line.
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