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A EVALUATING SOMIGLIANA COORDINATES

As explained in our main paper [Chen et al. 2023], Somigliana coor-
dinates for each face i and node j are defined as

Tix) = /a T 0pu(y) doy, (1a)
Kj(x) = /a K29 (w) doy, (1b)

Finding efficiently-computable closed-form expressions for these in-
tegrals is challenging. Instead, we apply quadratures to numerically
evaluate them in practice. Here, we provide details on integrating
these integrals for the 2D and 3D cases. Given a point x € Q, we
compute both T;(x) and Kj(x) by iterating over each element of
the domain boundary.

2D case. Given an edge Lpq=(yp,yq), a point y on this edge can
be expressed as y =y, + a(yq — yp) for a barycentric coordinate
x a€[0,1]. We define e=y4 —yp, d=y) — x, and

[ ] . :
r=ae + d (see inset), while r=||r|| denotes the
d norm of r. Since ¥j(y) are piecewise constant
14 Y per edge, face coordinates are easily computed
Yyp € Yq

through quadrature as:
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Ky, (x) = / K (%) doy = el / K(y(a),x) da

|e||/ (a—b)ln( (a)) ’(’)rm)r («) da
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where a= 1//,1(2d_17r) and b=a/4(1—v), while {(wy, ar) }r denotes
the pairs of weights and (barycentric coordinates of) points of a
Gauss-Legendre quadrature over the interval [0, 1].

As for the ver’iex coordinzites, integrating over the line segment Lyq
contributes T, P9 (resp. Ty P9 to Tp(x) (resp. Tg(x)) with:
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Similarly, we have T,;pq (x)=|lell /01 T (y(a), x)a da, and both of
them are approximated using a Gauss-Legendre quadrature. We
then assemble each T;(x) from its two neighboring edges Lp; and
Liq via:

L,,,

Ty(x) = T (x) + T, ().

3D case. The 3D case proceeds similarly: given a triangular cage
facet Apgs = (Yp, Yq, Ys), a point inside this triangle can be expressed

o using barycentric coordinates as y = y, +
P Ys a(yq—Yp)+P(ys—yp), where a € [0, 1], and
W B € [0,1—a]. Denote v=y4 — yp,w=ys — yp,
4 d=y, — x (see inset), so that r=d + av + fw,
’ ¢ Y4 with still r= [|[7||. Then one has:
Kopu®) = [ K(y,2)doy
Apgs
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where |A,q| is the area of A,,,, while {wy }; are the quadrature
weights of their associated 2D quadrature points {(a, fr)}x on a
canonical triangle in R? with nodes located at (0, 0), (0, 1) and (1, 0).
Taking into account both the cost and the generality of quadrature
calculations to support high-order precision, we choose to subdivide
each triangle into three quads to apply standard Gauss-Legendre
quadratures — please refer to Sec. 5 of our paper for an illustration.
Now, since the basis function ¢;(y) is a hat function, T;(x) is a sum
of components coming from all its neighboring triangle facets, i.e.,
Ti(x)=2ren; Tl.A (x). The contribution to T;(x) of a neighboring
triangle A,,,, for instance, reads:
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Similarly, we have
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B CONDITIONAL EQUIVALENCE TO CAUCHY-GREEN
COORDINATES (2D GREEN COORDINATES)

In the special 2D case when v=+00 and y =0, the traction terms given
by Eq. (14) from our paper is zero, so we only have the deformed
boundary y with traction kernel 7;(y, x) that contributes to the
actual deformation x. Since limy—+c0 b = 0, traction kernel becomes
T(r) = 3 1r2 [(n'r)I + nr' — rn']. As a result, the deformation
computed by summing over all edges reduces to
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For each edge, we can rewrite the above integral using complex
numbers denoted with hollow letters, yielding

x(x)
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where r* denotes the conjugate of 7. This proves that when v=+c0
and y=0, our 2D coordinates exactly reproduce the Cauchy-Green
coordinates [Weber et al. 2009] derived from Cauchy’s integral.
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