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The fundamental solutions (Green’s functions) of linear elasticity for an

infinite and isotropic media are ubiquitous in interactive graphics appli-

cations that cannot afford the computational costs of volumetric meshing

and finite-element simulation. For instance, the recent work of de Goes and

James [2017] leveraged these Green’s functions to formulate sculpting tools

capturing in real-time broad and physically-plausible deformations more

intuitively and realistically than traditional editing brushes. In this paper,

we extend this family of Green’s functions by exploiting the anisotropic

behavior of general linear elastic materials, where the relationship between

stress and strain in the material depends on its orientation. While this more

general framework prevents the existence of analytical expressions for its

fundamental solutions, we show that a finite sum of spherical harmonics can

be used to decompose a Green’s function, which can be further factorized

into directional, radial, and material-dependent terms. From such a decou-

pling, we show how to numerically derive sculpting brushes to generate

anisotropic deformation and finely control their falloff profiles in real-time.
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1 INTRODUCTION

The fundamental solutions, or Green’s functions, of anisotropic

elasticity corresponding to point loads applied to an infinite elastic

space are key in solid mechanics: their integral and Fourier-based

expressions [Mura and Kinoshita 1972; Barnett 1972] have found

applications in inclusion, dislocation, and crack problems [Xie et al.

2016]. In graphics, Green’s functions have often been used to avoid

the computational overhead involved in solving the elasticity equa-

tion when evaluating a static deformation under an imposed load,

whether in animation [James and Pai 1999, 2003], shape editing [Lip-

man et al. 2008], or even water wave simulation [Schreck et al.

2019] and acoustics [James et al. 2006] to name a few applications.

In the context of volume sculpting, this idea culminated recently

with the Kelvinlets work of de Goes and James [2017, 2018]: they

proposed real-time brushes for common modeling primitives such

as grab, scale, twist, and pinch, based on a regularized version of

these Green’s functions which are free of computationally intensive

solve and large memory requirement.
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Dirichlet constraints

Fig. 1. Meshes Go Green. Our generalized Green’s functions provide a

variety of physically-based sculpting primitives offering fine artistic control

over their spatial deformation in real-time. Here, the Spot model (top left)

is deformed through an elastic displacement fitting prescribed constraints

(middle); further manipulating the spline curves defining the radial decay of

the deformation (bottom) allows for intuitive editing of the shape (right).

However, Kelvinlets are restricted to isotropic elastic objects, for
whichGreen’s functions have closed-form expressions. This severely

constrains the look and feel of the brush-like deformations that

can be rapidly evaluated on the fly during an editing session by

a digital artist. Moreover, only limited control over the type of

regularization of the inherently singular nature of Kelvinlets has

been proposed [Cortez et al. 2005], which was partially remedied in

recent extensions [de Goes and James 2019]. In this paper, we palliate

these two limitations by offering a fully general parameterization of
the regularized Green’s function of anisotropic elasticity. In particular,

• we introduce a spherical harmonic (SH) expansion of Green’s

functions to represent the most general form of anisotropic

linear elasticity, reproducing and extending the isotropic case

of Kelvinlets without computational overhead; we also identify

a decomposition of this expansion providing an intuitive use of

these Green’s functions for real-time volume sculpting.

• we present a general approach to regularize Green’s functions by

editing directly the radial integrals in the harmonic expansion
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to offer intuitive artistic control over the falloff profile of the

deformation generated by sculpting brushes.

2 REGULARIZED GREEN’S FUNCTIONS

In this section, we derive concrete expressions of regularized Green’s

functions for the anisotropic linear elasticity operator, which we will

leverage later in Sec. 3 for the efficient implementation of sculpting

tools. Since the loss of isotropy prevents the existence of simple

closed-form solutions, we propose the use of spherical harmonics

(SH) to offer a general expression of these Green’s functions. More-

over, we identify a decomposition of this SH expansion into three

decoupled terms: a directional term dealing with the anisotropic

behavior, a radial term related to the regularized load which con-

trols the propagation of a deformation away from the applied load,

and a matrix term solely determined by the material itself. This

decomposition is shown to offer simple and intuitive control over

the physically-based deformation of arbitrary materials.

Notations. In the remainder of this paper, we use a bold font
to denote vectors, matrices and high-order tensors, while an italic
font is used for scalars. A wide ĥat denotes the Fourier transform.

Applied to vectors, |brackets| denote their lengths, while a t̃ilde

indicates their normalizations, i.e., a vector v is written v = |v| ṽ.

2.1 General regularized Green’s function

Definition. Given an external load f (x), the deformation (i.e., dis-

placement) u : R3→R3 of a linear elastic object is described (using

Einstein’s notation for repeated indices) through

𝐶𝑖 𝑗𝑘𝑙
𝜕2𝑢𝑘

𝜕𝑥𝑙 𝜕𝑥 𝑗
+ 𝑓𝑖 = 0, (1)

where C = [𝐶𝑖 𝑗𝑘𝑙 ] is the fourth-rank elasticity tensor of the elastic

material. Due to symmetries, this tensor has 21 independent com-

ponents in the general case, but only two (the Lamé coefficients)

when the material is isotropic [Kharevych et al. 2009]. Its regularized

Green’s function G : R3→R3×3 is thus, by definition, satisfying:

𝐶𝑖 𝑗𝑘𝑙
𝜕2𝐺𝑘𝑚

𝜕𝑥𝑙 𝜕𝑥 𝑗
+ 𝛿𝑖𝑚𝑔𝜀 (x) = 0, (2)

where 𝐺𝑘𝑚 denotes the components of the tensor-valued function

G =


𝐺11 𝐺12 𝐺13

𝐺21 𝐺22 𝐺23

𝐺31 𝐺32 𝐺33

 ,
𝛿𝑖𝑚 is the Kronecker delta, and 𝑔𝜀 (x) is a regularization of the Dirac

delta distribution used in classical Green’s functions. This smoothed

load𝑔𝜀 (x) is typically assumed to be an arbitrary radially-symmetric

function, parameterized by the width 𝜀 of its spatial support.

Explicit expression of Green’s functions. To find a solution to Eq. (2),
we first notice that the Fourier transform of 𝐺𝑘𝑚 must satisfy:

𝐺𝑘𝑚 (𝝃 ) = (𝐶𝑖 𝑗𝑘𝑙 𝜉𝑙 𝜉 𝑗 )−1𝛿𝑖𝑚𝑔𝜀 (𝝃 ). (3)

Applying the inverse Fourier transform [Barnett 1972] then yields:

G(x) = 1

8𝜋3

∫
R3

Ĝ(𝝃 ) exp(ix · 𝝃 ) d𝝃 , (4)

degree 0

degree 1

degree 2

degree 3

Fig. 2. Real parts of spherical harmonics. Spherical harmonics form a

complete set of orthogonal basis functions which are partiularly convenient

to express spatial functions that are direction-dependent.

where i is the complex number satisfying i
2=−1, 𝝃 ∈ R3 is a phase

vector in the spectral domain, while 𝑔𝜀 is the Fourier transform of

𝑔𝜀 . Note that for a radial function 𝑔𝜀 , its Fourier transform 𝑔𝜀 is also

provably radial, and can be computed via the Hankel transform in

3D [Grafakos 2008, Appendix B.5]:

𝑔𝜀 (𝝃 ) = 𝑔𝜀 ( |𝝃 |) =
(2𝜋)

3

2√︁
|𝝃 |

∫ ∞

0

𝐽 1
2

( |x| |𝝃 |)𝑔𝜀 ( |x|) |x|
3

2 d|x|, (5)

where 𝐽𝛼 is the Bessel function of order 𝛼 . As we review at length

in the supplemental material (Sec. B), the Green’s function for 𝜀=0

(i.e., with no regularization, corresponding to an impulse load) is

singular at the origin — but a well-chosen smooth distribution 𝑔𝜀
can suppress this singularity. Once a regularized Green’s function is

obtained, the displacement field for a load f (x)=𝑔𝜀 (x−x′) h centered
around x′ (where h is a constant vector) becomes:

u(x) = Re[G(x − x′)] h, (6)

where Re[·] keeps only the real parts of its operand’s components.

2.2 Spherical harmonic expansion

Given an arbitrary, non-degenerate 3× 3× 3× 3 elasticity tensor

C, the integral in Eq. (4) may not have a closed-form expression.

However, the plane-wave expansion, expressing a plane wave as a

linear combination of spherical waves [Newton 2002] via:

exp(ix · 𝝃 ) = 4𝜋

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

i
𝑙 𝑗𝑙 ( |x| |𝝃 |)𝑌𝑚𝑙 (x̃)𝑌𝑚𝑙 (𝝃̃ ), (7)

can be used to expand the Green’s function G(x) into a spherical

harmonic series, yielding:

G(x) = 1

2𝜋2

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

∫
R3

Ĝ(𝝃 )i𝑙 𝑗𝑙 ( |x| |𝝃 |)𝑌𝑚𝑙 (x̃)𝑌𝑚𝑙 (𝝃̃ ) d𝝃 , (8)

where 𝑗𝑙 (·) is the spherical Bessel function, 𝑌𝑚
𝑙

is the spherical

harmonic function of degree 𝑙 and order𝑚, while 𝑌
𝑚
𝑙 is its complex

conjugate, the latter two being evaluated at the normalized vectors

x̃=x/|x| and 𝝃̃ =𝝃 /|𝝃 | respectively.

Convenient decomposition. Since 𝑔𝜀 is a radial function, Eq. (3)

implies that the Green’s function G can be rewritten as the sum

over all degrees of spherical harmonics of a product of three parts:

G(x) = 1

2𝜋2

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

i
𝑙 𝑌𝑚

𝑙
(x̃)

∫ ∞

0

𝑔𝜀 ( |𝝃 |) 𝑗𝑙 ( |x| |𝝃 |) d|𝝃 | ·∫
S2
(𝐶𝑖𝑘 𝑗𝑙 𝜉𝑘𝜉𝑙 )−1𝑌

𝑚
𝑙 (𝝃̃ ) dS(𝝃̃ ),

(9)
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fundamental solution

degree 0 degree 2 degree 4

degree 6 degree 8 degree 10

material

=

+ + +

+ + ...

Fig. 3. Spherical harmonic decomposition. A flat composite made out

of two materials (left inset, blue being stiffer than white) exhibits signifi-

cant anisotropy: it stretches much more along the material stripes. For the

equivalent homogenized anisotropic material, the Green’s function for a

regularized load (top) demonstrates this anisotropy, and it is well approxi-

mated using a weighted sum of low, even degrees of spherical harmonics.

where S2 is the unit sphere. This expression makes explicit the

components of a Green’s function of an arbitrary elasticity tensor

onto the orthonormal basis of spherical harmonics. Rewriting Eq. (9)

in spherical coordinates (𝑟 ∈ R+, 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋]) yields the
more concise expression:

G(𝑟, 𝜃, 𝜑) = 1

2𝜋2

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

i
𝑙 𝑌𝑚

𝑙
(𝜃, 𝜑) 𝑅𝑙 (𝑟 ) P𝑚𝑙 (C), (10)

where each P𝑚
𝑙
, non-vanishing only for even degrees 𝑙 , is a constant

3 × 3 matrix of imaginary values depending only on the elasticity

tensor of the elastic material, while each 𝑅𝑙 is a scalar radial func-

tion (we color-coded each term to make the connection with Eq. (9)

obvious). This expression makes clear that the radial behavior of a

Green’s function around the load is explicitly related to the applied

regularized load: when the Dirac delta function 𝑔0=𝛿 is used, the

integral of 𝑗𝑙 leads to a singular function 𝑅𝑙 at the origin (see Sec.

B of the supplemental material); instead, a regularized 𝑔𝜀 (x), inte-
grated against the spherical Bessel functions removes the resulting

singularity. To use this three-term expression, we will see in Sec. 3.1

that one can simply truncate this infinite sum to a given maximum

degree 𝑙max.

2.3 Extension to affine loads

Similar to [Ainley et al. 2008; de Goes and James 2017], our SH-based

regularized Green’s functions can be extended to affine loads. When

a regularized affine load of the form F(x)=𝑔𝜀 (x − x′) H (where H is

a constant 3×3 matrix) is applied at a location x′, the displacement

field is assembled based on the gradient of the Green’s function as:

u(x) = Re

[
∇G(x − x′)

]
: H, (11)

where ∇G is a third-rank tensor, whose real part contracted with

matrix H produces a displacement vector. As described in [de Goes

and James 2017], affine loads allow for a variety of modeling primi-

tives depending on the type of the matrix H; for instance, scaling

material scale twist pinch

Fig. 4. Deformation via affine loads. The gradient of our Green’s function
allows the design of real-time sculpting brushes for common modeling prim-

itives such as scale, twist, and pinch. While Kelvinlets can handle isotropic

material (top), more complex anisotropic deformation can be obtained with

our general Green’s functions in the case of homogenized non-isotropic

materials (bottom).

for a matrix proportional to the identity matrix, twisting for a skew-

symmetric matrix, and pinching for a traceless matrix as depicted

in Fig. 4. Noting that the partial derivative ∇𝑝 with respect to spatial

coordinate 𝑥𝑝 simply amounts to a multiplication in the spectral

domain, i.e., �𝐺𝑖 𝑗,𝑝 = i 𝜉𝑝 𝐺𝑖 𝑗 , 𝑝 =0, 1, 2,

the partial derivative of G can also be re-expressed into three terms

just like in Eq. (9), leading to a 3×3 matrix for each partial derivative

∇𝑝G expressed as (we keep the color-coding convention for the

three terms as used above):

∇𝑝G(x)= 1

2𝜋2

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

i
𝑙+1 𝑌𝑚

𝑙
(x̃) R𝑙 ( |x|) P𝑚

𝑙,𝑝
(C) (12)

where the two terms R𝑙 and P𝑚
𝑙,𝑝

are expressed as:

R𝑙 ( |x|) =
∫ ∞

0

𝑔𝜀 ( |𝝃 |) 𝑗𝑙 ( |x| |𝝃 |) |𝝃 | d|𝝃 |,

P
𝑚
𝑙,𝑝

(C) =
∫
S2
(𝐶𝑖𝑘 𝑗𝑙 𝜉𝑘𝜉𝑙 )−1𝑌

𝑚
𝑙 (𝝃̃ ) 𝜉𝑝 dS(𝝃̃ ) .

In this affine load case, the material-dependent matrices P𝑚
𝑙,𝑝

are

only non-vanishing for odd degrees (𝑙 =1, 3, 5...).

2.4 Controllable regularization

From Eq. (9), we observe that the only term involving the regularized

load𝑔𝜀 can be evaluated for any choice of regularization that leads to

a finite integral. This allows us to choose the form of regularization

to employ, and thus, to control the shape of the displacement away

from the applied location. A canonical choice is, for instance, the nor-

malized Gaussian distribution 𝑔𝜀 ( |x|) = 1/(𝜀3𝜋3/2) exp(−|x|2/𝜀2),
whose Fourier transform is 𝑔𝜀 ( |𝝃 |)=exp(−𝜀2 |𝝃 |2/4), yielding [Wol-

fram Research, Inc. 2021]:

𝑅𝑙 (𝑟 ) =
√
𝜋

2

𝑟 𝑙 𝜀−𝑙−1 Γ
(
𝑙 + 1

2

)
1𝐹1

(
𝑙 + 1

2

; 𝑙 + 3

2

;−𝑟
2

𝜀2

)
, and

R𝑙 (𝑟 ) =
√
𝜋 𝑟 𝑙 𝜀−𝑙−2 Γ

(
𝑙

2

+ 1

)
1𝐹1

(
𝑙

2

+ 1; 𝑙 + 3

2

;−𝑟
2

𝜀2

)
,

(13)
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where Γ is the Gamma function and 1𝐹1 is the regularized hyperge-

ometric function. Fig. 5 shows these radial functions for the seven

leading spherical harmonic degrees to demonstrate that the variance

𝜀 controls the radius of influence of the deformation.

0 0.5 1

0

5

𝑟

𝑅
𝑙

𝜀 = 0.2

𝑙 = 0

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑙 = 5

𝑙 = 6

0 0.5 1

0

50

𝑟

𝑅
𝑙

𝜀 = 0.02

𝑙 = 0

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑙 = 5

𝑙 = 6

Fig. 5. Gaussian-regularized 𝑅𝑙 (𝑟 ) . Regularizing the Dirac delta impulse

load ensures a finite Green’s function at the origin; e.g., a normalized Gauss-

ian load leads to a simple analytical expression for all radial functions 𝑅𝑙
given in Sec. 2.4, where the radial decay of the fundamental solution is

easily controlled by the Gaussian standard deviation 𝜀 , as shown for two

different values above.

Implicit regularized load. While the regularization we just dis-

cussed or the one advocated in [de Goes and James 2017] suffices

for many tasks, one may want a finer control over the radial decay

of the elastic deformation around the applied location of the load

since offering a choice in regularized loads is an important feature

for modeling. Seemingly, deriving custom-made regularizations of

the load raises a theoretical roadblock: constructing a large class

of analytical functions 𝑔𝜀 that ensure the existence (finiteness) of
the radial integral at the origin is not trivial. Fortunately, with our

decomposition of Green’s functions via spherical harmonics, we can

directly edit the integrated radial function 𝑅𝑙 ( |x|) for each degree

in order to customize a specific form of deformation attenuation

around the point where the load is applied, and the shape of the

edited curves intuitively maps to the resulting deformations, see

Figs. 6 and 7 — we use cubic splines in our implementation as we

rest pose

h
H = 𝑠I

Fig. 6. User-controlled falloff profiles. Reshaping the radial functions
𝑅𝑙 (𝑟 ) (resp., R𝑙 (𝑟 )) provides real-time artistic control over the elastic de-

formation generated by a load h (resp, affine load H): it implicitly selects

a regularization of the impulse load. Gaussian-regularized loads lead to

smooth deformations of controllable radius (middle) of the rest pose (left);

spline editing of the radial functions (right) affects the resulting deformation

in a very intuitive manner as the closeups illustrate: note the effects of the

small oscillations in the 𝑅0 function on the horn-like deformation, and the

saddle-like displacement due to the last bump in function R1.

will describe in Sec. 3.2 to offer easy and intuitive control to the

artists. Choosing these functions 𝑅𝑙 directly defines a regularized
Green’s function, whose actual mathematical expression could be

extremely complex. It can be understood as an indirect regulariza-

tion of the load; the regularized loads corresponding to prescribed

radial functions may not even be continuous, but our approach

bypasses a choice of a functional space for regularized loads that

would unnecessarily limit the user’s creativity: the final deformation

is what visually matters.

2.5 Constrained deformation

Just like in the isotropic case, constraining a deformation pointwise

can be achieved using Green’s functions by solving a dense linear

system. Given 𝑘 points {x𝑖 }𝑘−1𝑖=0 and their prescribed displacements

{u𝑖 }𝑘−1𝑖=0 , a constrained deformation field can be found as the linear

combination of 𝑘 functions as u(x) =∑
𝑖 Re[G(x − x𝑖 )] h𝑖 , where

the vectors {h𝑖 }𝑘−1𝑖=0 are solutions of the 3𝑘 × 3𝑘 linear system:
Re[G(x0 − x0)] . . . Re[G(x0 − x𝑘−1)]

.

.

.
. . .

.

.

.

Re[G(x𝑘−1 − x0)] . . . Re[G(x𝑘−1 − x𝑘−1)]



h0
.
.
.

h𝑘−1

 =

u0
.
.
.

u𝑘−1

 .
Once the left hand side matrix is prefactorized, one can easily add

a few more constraints interactively using low rank updates as

explained in [de Goes and James 2017], see Fig. 1.

3 RESULTS

Equipped with the expressions of the general Green’s functions and

the various resulting deformation fields we derived, we can now

focus on how to leverage them numerically to derive physically-

plausible digital sculpting tools facilitating the real-time and intu-

itive editing of an arbitrary shape without requiring any expensive

volumetric meshing or finite-element simulation.

3.1 Implementation details

The implementation of our Green’s functions and associated dis-

placements is rather straightforward as it relies on the evaluation of

a truncated sum of terms that are either trivial to evaluate at runtime

or simple to precompute offline. A C++ code is available at https://
gitlab.inria.fr/geomerix/public/gogreen, where special func-
tions such as spherical harmonics and hypergeometric functions

are computed using the boost [Boost 2021] and GSL [Gough 2009]

libraries. We discuss our choice of truncation next to ensure both

efficiency and generality.

Analysis of the spherical harmonic expansion. Once the elasticity
tensor C of an elastic material is given, one can directly evaluate a

deformation field through Eq. (6) or (11). However, truncating the

infinite sum of the Green’s function may lead to numerical arti-

facts in general. To properly evaluate the effect of truncation, we

compute the approximate deformation fields u[𝑙max ] (x) for various
elastic materials from Fig. 12 using a fixed load, computed from the

Green’s function in Eq. (10) where the sum is truncated after the

first 𝑙max degrees. We also estimate the exact deformation fields u to

high accuracy using a high-order (5810-point) Lebedev quadrature,

4
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𝜔1=0.0

𝜔3=0.0

𝜔5=0.0

𝜔1=1.0

𝜔3=3.3

𝜔5=10.0

𝜔1=2.0

𝜔3=6.6

𝜔5=20.0

𝜔1=3.0

𝜔3=10.0

𝜔5=30.0

Fig. 7. Pinch control. In contrast to Kelvinlets, we have full control over the falloff profile of a deformation. For a DNA double helix pinched in the middle for

instance, scaling one of the low-degree radial functions R1, R3 or R5 with 𝜔𝑖=1,3,5 respectively tunes the magnitude of the deformation from global to local.

The user selected a Layered material (second choice in Fig. 12) for this example. Deriving physically-based deformation via volumetric meshing and simulation

of this model would not be even close to interactive; our evaluation of anisotropic Green’s functions is thus the only viable real-time editing tool here.

accurate to the 131
st
algebraic order, for the evaluation of the spher-

ical integration in P𝑚
𝑙
(C) since no analytical solutions are known.

We then deduce the relative error 𝛿 =
∫
Ω ∥u[𝑙max ]− u∥ dx/

∫
Ω ∥u∥ dx.

Fig. 9 shows that the elastic displacement is very well approximated

using only a few spherical harmonic degrees; one can see that the

approximation error decays fast with the max degree 𝑙max for all the

elasticity tensors, with the worst error happening for a material that

is extremely anisotropic in one single direction — which is expected

as the decay rate of the spherical harmonic coefficients depends

mostly on spatial smoothness. When the relative truncation error is

below 10
−2

, results are visually indistinguishable from the exact so-

lution. In order to handle accurately and efficiently most anisotropic

materials, we thus truncate the sum at 𝑙max=8 in practice, resorting

to 𝑙max=20 only for extremely strong anisotropy. Note finally that

no discontinuity is created by our truncation, since all terms are

spatially smooth.

order=6 order=14 order=26 order=38 order=50

Fig. 8. Lebedev quadrature points. As the number of evaluation points

grows, Lebedev quadrature offers an approximation to the surface integral

of any function over the unit sphere up to a certain order of accuracy, exactly

capturing the integral of spherical harmonics of increasing degrees.

Fast evaluation of elastic displacements. In the truncated sum-

mation of the Green’s functions in Eq. (10) (resp., of its gradient

in Eq. (12)), the matrix-valued terms P𝑚
𝑙

(resp., P𝑚
𝑙,𝑝

) are only non-

vanishing for even degrees 𝑙 =0, 2, 4... (resp., odd degrees 𝑙 =1, 3, 5...),

so one can safely ignore half of the degrees for efficiency. Similarly,

for each degree 𝑙 , the real parts for 𝑚 and −𝑚 (𝑚 ≤ 𝑙) are equal,

further decreasing the evaluation cost by half. When the material

is purely isotropic, its evaluation further reduces to only non-zero

values for degrees 0 and 2 (resp., for degrees 1 and 3): in this case, the

expression of Eq. (9) is exactly the Kelvin solution when𝑔𝜀 (x)=𝛿 (x),
and the regularized Kelvin solution [Cortez et al. 2005; de Goes and

James 2017] when 𝑔𝜀 (x)=15𝜀4/(8𝜋) ( |x|2 + 𝜀2)−7/2 as we prove in
the supplemental material (Sec. B). For a material with a general

anisotropic elasticity tensor C, one may wonder if there are simple

closed-form expressions for all degrees 𝑙 . We sidestep this issue by

applying a discrete quadrature rule to evaluate the matrices P𝑚
𝑙

and P𝑚
𝑙,𝑝

numerically in a preprocessing step: we simply precompute

numerical approximations of their integral expressions up to de-

gree 𝑙max. We rely on Lebedev quadrature in our implementation,

systematically using the Lebedev quadrature locations and weights

from [Burkardt 2020] with an accuracy order of 194 by default,

see Fig. 8. We thus obtain a fast, on-the-fly evaluation of the dis-

placement field given in Eq. (6) or Eq. (11) at runtime using these

precomputed matrices P𝑚
𝑙

and P𝑚
𝑙,𝑝

since the spherical harmonics

𝑌𝑚
𝑙

are computed analytically and the radial functions 𝑅𝑙 and R𝑙

are either known analytically for simple choices of regularization or

through spline evaluation otherwise as we will describe in Sec. 3.2.

While our implementation relies on CPU evaluation, implementing

our approach on the GPU as a geometry shader would lead to faster

running times, since massively-parallel processing of all the mesh

nodes of a model is simple due to our expressions requiring only a

few precomputed terms.
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Fig. 9. Error dependence on SH degrees. For the bimaterials from Fig. 12

with a contrast of 10
2
, we measure the 𝐿2 relative error 𝛿 of a deformation

field as a function of the number of spherical harmonic degrees used in its

evaluation (top). For the spottedmaterial, truncating after only eight degrees

is already visually indistinguishable from the exact solution as evidenced

by the mean-curvature plots for truncations after 0, 2, 8 and 38 degrees.

3.2 Real-time volume sculpting

Our fast evaluation of generalized Green’s functions and their asso-

ciated displacements are particularly amenable to real-time volume

sculpting: as demonstrated in [de Goes and James 2017], a number

of modeling operations can be derived from the fundamental solu-

tion of elasticity to capture broad volume deformations. They result
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(a) (b)

(c) (d) (e)

Fig. 10. Wrinkle design. Strong material anisotropy generates wrinkle-like

components of various fold counts (𝑙 = 6, 8, 10 for (c), (d) and (e)) when

projected onto spherical harmonics. One can thus turn a regular grab (a)

into a wrinkle brush (b) through either early truncation, or by reweighting

these physically plausible components.

in more intuitive and realistic effects than traditional Maya-like

brushes that often fail to offer physically-plausible editing. All the

digital modeling tools using their regularized Kelvinlets (brushes,

compound brushes, gradient contraints, symmetrized deformations)

can be straightforwardly adapted to our more general framework,

where now anisotropy of the material is leveraged to offer a wider

range of volume sculpting. In this section, we provide a series of

examples showcasing the intutive nature and visual quality of our

physically-based deformation tools compared to existing sculpting

tools; in particular, we show how the multiscale extrapolation pro-

posed in the original Kelvinlets paper finds a simpler, more flexible

solution through our expansion decomposition and its radial term.

User interface. Our overall approach to digital sculpting closely

follows the work of de Goes and James [2017]: a selection of brushes

is offered to the user, and once selected, the brush center is as-

signed to the mouse click location. By default, we use a Gaussian-

regularized Green’s function for an isotropicmaterial, parameterized

with the radius of influence 𝜀 and the Lamé coefficients over which

the user has interactive control. During a mouse event, we deform

all the vertices within a ball around the brush by moving them along

the streamlines defined by the elastic displacement field to ensure a

physically-plausible deformation.

Anisotropy control. The user selects the deformation behavior she

seeks by providing a particular type of anisotropic elasticity. For

simple cases such as transverse isotropy or orthotropy, the elasticity

tensors are parameterized through simple and intuitive Young’s

moduli, shear moduli and Poisson ratios (see Sec. 1 in the supple-

mental material) — the user can thus specify each parameter to

realize anisotropy control as demonstrated in Fig. 11. However, for

more general anisotropic cases, directly prescribing an elastic tensor

C through its 21 independent coefficients in Voigt form is no longer

intuitive or even concise. We found quite convenient to prescribe

an arbitrary material by selecting one of a few proposed patterns

of bimaterials (and a rotation, to align the anisotropy with a given

𝜈𝑥𝑦 >0 𝜈𝑥𝑦 <0 𝜈𝑥𝑦 >0

𝜈𝑥𝑧 >0 𝜈𝑥𝑧 <0 𝜈𝑥𝑧 <0

+𝑥 +𝑥 +𝑥

Fig. 11. Anisotropic manipulation. (top) Stretching an orthotropic cube

along one direction causes shrinkage or inflation along the other directions

depending on prescribed Poisson ratios. (bottom) Homogenizing composite

materials (insets) provides rich gamut of physical behaviors even for a simple

stretching and pinching of a sphere.

direction) that we then homogenize to its equivalent anisotropic

elastic tensor using the approach of [Kharevych et al. 2009]. The pat-

terns are simply defined by assigning one of two isotropic materials

for each cell of a 16×16×16 regular grid. The user has also interactive
control over the stiffness contrast between the two isotropic materi-

als. This simple interface offers intuitive control over the Green’s

functions by selecting the resulting symmetry of the material tensor

via the spatial symmetry of its associated geometric patterns as

shown in Fig. 12. The homogenized elastic tensor is represented as

a symmetric 6×6 matrix C𝑉 , re-expressing the fourth-order tensor

𝐶𝑖 𝑗𝑘𝑙 based on the Voigt notation for reduced storage. Fig. 11 shows

the stretching of an orthotropic cube for various Poisson ratios, and

a pinched & stretched sphere for three different materials: while

pinching an isotropic material generates the expected bean-like

shape, anisotropic materials generate richer deformations.
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Fig. 12. Material Homogenization. Homogenized elasticity tensor of a

few bimaterials, expressed in reduced Voigt notation [Kharevych et al. 2009],

where for a given material, same-color coefficients indicate equal values,

reflecting the symmetries of its elasticity tensor.

Regularization and falloff profile control. Aswe reviewed in Sec. 2.2,
our three-term decomposition of a generalized Green’s function

provides a very convenient way to control the radial behavior of

deformation fields: one can directly choose the radial function 𝑅𝑙
or R𝑙 for one or more spherical harmonic degrees. This property

has important consequences for modeling purposes. A limitation

of Kelvinlets for a canonical regularized load is its fixed spatial de-

cay, which requires a special, multiscale extrapolation to construct

brushes with arbitrarily decays involving a linear combination of
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deformations; a recent extension [de Goes and James 2019] sim-

plifies this construction, but still offers only limited control over

spatial falloff. Instead, our radial functions offer a convenient, in-

direct way to choose a regularized load as argued in Sec. 2.4; but

it also provides a simple and straightforward way to define falloff

profiles that control the locality of deformation, more in line with

traditional brushes [Angelidis et al. 2004]. As mentioned earlier,

we assign our radial functions 𝑅𝑙 (up to degree 𝑙max) by default to

the Gaussian-regularized function from Eq. (13) parameterized by a

scale 𝜀. As Fig. 5 shows, 𝑅0 is significantly larger than all the others,

and it is also the only one not valued zero at the origin. We con-

vert these functions into cubic splines by evaluating their analytical

values on regular samples with a density based on the local mesh

resolution of the model in order to control even its smallest scale.

The user can then freely edit the curves to achieve her desired look:

for instance, adding a few wiggles in 𝑅0 by dragging its control

points up and down adds bumps to a deformation as demonstrated

in Fig. 1, while editing the second radial function 𝑅2 further insert

fine details. We found that only editing 𝑅0 and 𝑅2 (resp., 𝑅1 and 𝑅3
for gradient-based brushes) is enough to offer a very rich spectrum

of deformations: the other radial basis functions are less visually

impacting, and are thus less worth editing, see Fig. 7. Finally, we

maintain the zero value of all 𝑅𝑙>1 at the origin so that the maximum

magnitude of the deformation remains at the center of the modeling

brush. Fig. 6 further shows how edits of the spline curves 𝑅𝑙 allow

for fine artistic control.

Timing. We performed a number of tests on a desktop with a

32-core Intel
®
Xeon

®
Silver CPU. We found that evaluating the

spherical harmonic series per point has a complexity in O(𝑙2
max

)
as shown in Fig. 13(a), and that the calculation of a displacement

vector takes less than 0.015𝑚𝑠 when 𝑙max = 8. In terms of scala-

bility, processing time grows linearly in the number of points to

displace (Fig. 13(b)), and the constant scaling of the complexity is

mostly determined by the number of threads available for paral-

lellization. In our tests, 10
6
points only require about 440𝑚𝑠 for

their displacement calculation using 56 threads and 𝑙max = 8. The

massive parallellism provided by GPUs would undoubtedly lead to

considerable speedups.
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Fig. 13. Timing. For both vector and affine loads, we count: (a) per-point

computational cost for a truncation of the SH series at 𝑙max; (b) total com-

putational cost with respect to the number of points evaluated for 𝑙max=8

using 16 and 56 threads respectively.

Exploiting Gibbs phenomenon for wrinkling. While toyingwith our

modeling brushes, we also stumbled upon an unexpected side effect

that we turned into a feature. We noticed that for very anisotropic

materials, the fundamental solution of elasticity expressed as a

weighted sum of spherical harmonics include interestingly com-

plex individual terms, even if the total sum is rather simple: Fig. 4

shows that the solution of a regularized load applied on a strongly

anisotropic material includes, for each SH degree, deformation fields

that are more complex than the total deformation, akin to a form

of Gibbs phenomenon. Truncating the Green’s function at 𝑙max=4

for instance thus maintains smoothness and physical plausibility of

the deformation, but offers wrinkle-like features. Fig. 10 shows how

such an early truncation or the use of selected degrees turns a regu-

lar grab brush into a wrinkling brush, where directionality is easily

adjusted through rotation of the anisotropy of the material and of

the associated SH-projected material coefficients [Green 2003].

4 CONCLUSIONS

In this paper, we have extended the family of deformation tools based

on regularized fundamental solutions of linear elasticity proposed

in [de Goes and James 2017] by considering anisotropic materials.

Our expression of the fully-general Green’s functions for the elastic-

ity operator based on a spherical harmonic expansion was shown to

factor into three terms, which we leveraged for efficient evaluation

and intuitive control of physically-based deformation. Despite gen-

eralizing the original Kelvinlets approach to arbitrary homogeneous

elastic materials, our method still provides real-time volume sculpt-

ing tools by avoiding volumetric discretization or elastic simulation

of the model. It also provides far enhanced control over both the

directionality and falloff profile of the editing tools, as well as a

richer gamut of physically-derived spatial deformation. While we

only exploited our general Green’s functions and their numerical

approximation for real-time sculpting, they may also apply to a

number of other interactive applications.

Future work. While Green’s functions for elasticity are tradition-

ally describing the solutions for an infinite homogeneous material,

it would be interesting to adapt our method to account for inho-

mogeneity. One could, for instance, use a spatial blending function

to interpolate between local elasticity tensors in Eq. (2) and derive

the associated Green’s function via Fourier transform. Note that

our approach could also be applied for elastic dynamics, where the

Fourier transform of the associated Green’s functions should be a so-

lution to a second-order ODE in frequency domain; control over the

propagation of elastic waves might ease the creation of animation.

Moreover, imposing boundary conditions typically requires a dense

linear system solve, which can become inefficient as the number of

constraints grows — as is typical of the boundary element method.

Analyzing the locality of our Green’s functions as a function of their

radial regularization and incorporating a fast multipole method

could help reduce computational complexity. Finally, a statistical

approach like Walk-on-Sphere [Sawhney and Crane 2020] might be

well adapted to offer fast previews of the solutions to large-scale

anisotropic equations with boundary conditions.
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