Power Coordinates: A Geometric Construction of Barycentric Coordinates on Convex Polytopes

Max Budninskiy
Caltech
Beibei Liu
Caltech
Yiying Tong
MSU
Mathieu Desbrun
Caltech

Abstract

We present a full geometric parameterization of generalized barycentric coordinates on convex polytopes. We show that these continuous and non-negative coefficients ensuring linear precision can be efficiently and exactly computed through a power diagram of the polytope’s vertices and the evaluation point. In particular, we point out that well-known explicit coordinates such as Wachspress, Discrete Harmonic, Voronoi, or Mean Value correspond to simple choices of power weights. We also present examples of new barycentric coordinates, and discuss possible extensions such as power coordinates for non-convex polygons and smooth shapes.

Keywords: Generalized barycentric coordinates, Wachspress and mean-value coordinates, power diagrams, polytopal finite elements.

Concepts: • Computing methodologies → Shape modeling; • Theory of computation → Computational geometry;

1 Introduction

Generalized barycentric coordinates extend the canonical case of Möbius’ barycentric coordinates on simplices: they offer a simple and powerful way to interpolate values on a polygonal (2D) or polytopal (3D) convex domain through a weighted combination of values associated with the polytope vertices. From values of a given function \(\Phi \) at vertices \(v_i \), one obtains a straightforward interpolating function \(\phi \) via:

\[
\phi(x) = \sum_{i=1}^{n} \lambda_i(x) \Phi(v_i).
\]

where the weights \(\{\lambda_i\}_{i=1..n} \) are functions of \(x \) that are often referred to as generalized barycentric coordinates.

While interpolation over simplicial (via linear basis functions) or quadrilateral/hexahedral (via multilinear basis functions) elements has been used for decades in finite element computations and graphics, a strong interest in the design of more general interpolants recently surfaced in various disciplines such as geometric modeling (for Bézier patches, mesh parameterization, and volumetric deformation), image processing (for image deformation) and computational physics (to define basis functions on polytopal elements). Among the many possible choices of coordinates that are known today, Wachspress coordinates [Wachspress 1975; Meyer et al. 2002; Warren et al. 2006] have been widely adopted in 2D and 3D as they possess simple closed forms and produce natural-looking interpolations in arbitrary convex domains due to being rational polynomials of minimal degree [Warren 2003]. Mean value coordinates [Floater 2003; Floater et al. 2005] are also very useful as they behave nicely even on non-convex polytopes [Hormann and Floater 2006], making them particularly convenient for cage-based shape deformation [Ju et al. 2005b].

These two most-common coordinates have recently been extended to spherical domains [Langer et al. 2006], to smooth shapes [Scheffer et al. 2007], and even to the Hermite setting [Dyken and Floater 2009]. Yet, the existence and construction of other generalized coordinates on convex polytopes remain relevant in geometric modeling [Varady et al. 2016] or even in finite element computations [Gillette et al. 2016], where convex elements are still strongly preferred to ensure discrete maximum properties. The goal of this paper is to propose a principled geometric approach to characterize, design and compute coordinates on convex polytopes that provably satisfy the key properties expected from barycentric coordinates.

1.1 Problem statement

This paper focuses mainly on polytopal barycentric coordinates in \(\mathbb{R}^d \) (\(d = 2, 3 \)). Let \(P \) be a non-degenerate convex polytope with \(n \) vertices \(V = \{ v_1, \ldots, v_n \} \). We further assume that these vertices are all extreme points of the polytope, that is, no vertex is a convex combination of the other vertices. Note that this implies that the discrete Gaussian curvature of each vertex is strictly positive. Functions \(\{ \lambda_i: \mathbb{R}^d \to \mathbb{R} \}_{i=1..n} \) are called barycentric coordinates if they satisfy the following properties:

- **Partition of unity:**
 \[
 \sum_{i=1..n} \lambda_i(x) = 1 \quad \forall x \in P \tag{a}
 \]

- **Linear precision:**
 \[
 \sum_{i=1..n} \lambda_i(x) v_i = x \quad \forall x \in P \tag{b}
 \]

- **Non-negativity** inside the convex polytope \(P \):
 \[
 \forall i \in [1..n], \quad \lambda_i(x) \geq 0 \quad \forall x \in P \tag{c}
 \]

- **Smoothness** away from vertices:
 \[
 \forall i \in [1..n], \quad \lambda_i(\cdot) \in C^k(P \setminus \{v_j\}) \tag{d}
 \]

In previous work, additional properties are often required of barycentric coordinates as well, including:

- **Exact interpolation of nodal data (Lagrange property):**
 \[
 \forall i, j \in [1..n], \quad \lambda_i(v_j) = \delta_{ij} \tag{e}
 \]

- **Restriction on facets of \(\partial P \):**
 For a facet \(F = \text{Conv}(v_{i_1}, \ldots, v_{i_m}) \subset \partial P \),
 \[
 \forall j \notin \{i_1, \ldots, i_m\}, \quad \lambda_j(x) = 0 \quad \forall x \in F. \tag{f}
 \]

However, the Lagrange property (e) and the property (f) of reduction to linearly-precise coordinates on the boundary faces of \(P \) are...
mere consequences of the requirements (a)–(d) for convex polytopes (see App. A). Generalized barycentric coordinates satisfying all these requirements are particularly desirable in a wide variety of applications: they enforce exact interpolation at vertices, offer a discrete maximum principle for interpolants, guarantee convergence of the Galerkin method for second-order PDEs, and so on [Floater 2015]. Despite their apparent simplicity, enforcing all these conditions is remarkably difficult as we now briefly review.

1.2 Previous work

While a thorough survey on generalized coordinates can be found in [Floater 2015], we briefly review previous approaches that have been proposed over the years to better position our contributions.

Early developments for convex polytopes. Motivated by the design of basis functions over convex polygons, Wachspress [1975] proposed a general construction of rational polynomial basis functions using projective geometry. This generalization of barycentric coordinates was further analyzed and extended to higher dimensions by Warren [Warren 2003], and its use in graphics (along with simple 2D and 3D evaluations) was advocated in [Meyer et al. 2002; Warren et al. 2006]. Weighted averages of simplicial barycentric coordinates were also introduced by Floater [1997] for parameterization purposes, but these coordinates were only \(C^0 \). The cotangent weights used for the Laplacian operator [Meyer et al. 2002] (often referred to as “discrete harmonic weights” [Eck et al. 1995]) were also noted as valuable, but fail to satisfy positivity (c). In the context of finite elements, the work of Malsch and Dasgupta [2004; 2005] extended Wachspress approach to weakly convex polygons and convex polygons with interior nodes.

Extensions to arbitrary polytopes. Recognizing that classical forms of coordinates often lose smoothness or are not well-defined when applied to a non-convex polygon, Floater introduced Mean Value Coordinates (MVC [Floater 2003]). These coordinates still have a simple expression that is easily evaluated, and while they fail to offer positivity on concave polytopes, they remain well defined everywhere in the plane given arbitrary polygonal domains [Hormann and Floater 2006]. Floater et al. [2006] showed that while the three most common existing generalized coordinates are part of a larger family, only two of them, namely MVC and Wachspress, satisfy requirements (c)–(f) for convex polytopes. A number of approaches have also explored the design of coordinates on non-convex polytopes by relaxing some of the barycentric requirements. When coordinates are used for deformation for instance, removing the Lagrange property and extending the coordinates to be convex polygons with interior nodes.

Further extensions. The idea of generalized coordinates for polytopes has been extended to smooth closed domains, see [Warren et al. 2006; Belyaev 2006; Schaefer et al. 2007]. Multiple methods also extended mean-value coordinates to the Hermite setting [Manson and Schaefer 2010; Weber et al. 2012; Li et al. 2013] when both values and gradients (i.e., normal derivatives) on the boundary need to be interpolated. It was also recognized in [Zhang et al. 2014] that localized influence of a given vertex of the polytope on the interpolation may be beneficial in some applications, bringing forward the idea of local coordinates.

Related works. Finally, there are a few applications that share commonalities with our work due to the generality of the concept of barycentric coordinates. For instance, methods for scattered data interpolation such as Shepard [Shepard 1968] and natural neighbors [Sibson 1981] bear significant similarities with barycentric coordinates: e.g., the Laplace interpolant variant of natural neighbors is linked to the discrete harmonic barycentric coordinates [Hiyoshi and Sugihara 1999; Cuelo et al. 2003]. The finite element literature is also brimming with discussions of various properties of barycentric coordinates on polytopes [Milbradt and Pick 2008].

1.3 Contributions

Despite significant advances in extending barycentric coordinates, only a few coordinates verifying conditions (a)–(f) on convex polytopes are known. In this paper, we exploit an equivalence between generalized coordinates and orthogonal dual diagrams to formulate a full geometric parameterization of barycentric coordinates via power diagrams. We also show how our formulation induces a simple, exact and efficient evaluation of coordinates that leverages robust computational geometry tools. Furthermore, we present how to design customized coordinates through simple weight functions per vertex of the polytope. Finally, we discuss how to extend our approach to non-convex polytopes and arbitrary shapes.

2 Power Coordinates for Convex Polytopes

We begin our exposition by establishing a relationship between generalized barycentric coordinates and power diagrams, providing a geometric (as opposed to analytical [Floater et al. 2006]) characterization of arbitrary coordinates on convex polytopes.

2.1 Background

Given a set of sites \(\{x_k\}_{k=1..n} \in \mathbb{R}^d \) and associated scalar weights \(\{w_k\}_{k=1..n} \), the power diagram of these weighted points is a tessellation in which each convex cell \(D_i \) is defined as:

\[
D_i = \{ x \in \mathbb{R}^d \mid |x - x_i|^2 - w_i \leq |x - x_k|^2 - w_k \quad \forall k \},
\]

where \(| \cdot | \) indicates the Euclidean norm. Note that when weights are all equal, power diagrams reduce to Voronoi diagrams.

Properties. Cells are guaranteed to be convex and have straight edges. Note that some cells may be empty as well. Two sites \(x_i \) and \(x_j \) are said to be neighbors if the intersection \(D_i \cap D_j \) is a non-empty power facet \(f_{ij} \) of codimension 1, corresponding to a planar polygon in 3D (see inset) and a line segment in 2D. We use \(l_{ij} \)
to indicate the distance |x_i - x_j|, and denote d_{ij} the signed distance from x_i to f_{ij} so that d_{ij} + d_{ji} = l_{ij}. The expression of the distance from a site to a power facet is actually known analytically:

\[d_{ij} = \frac{|x_i - x_j|^2 + (w_i - w_j)}{2|x_i - x_j|}. \] (2)

Finally, |f_{ij}| denotes the volume of f_{ij} (area in 3D, and length in 2D). Akin to the famous Voronoi-Delaunay duality, a power diagram also defines by duality a triangulation of the sites, known as the regular (or weighted Delaunay) triangulation, in which each neighboring pair of sites forms an edge that is orthogonal to its associated power facet. In fact, all possible orthogonal primal-dual pairs corresponding to points \(\{x_i\}_{i=1..n} \) are completely parameterized by weights \(\{w_i\}_{i=1..n} \); see, e.g., [Memari et al. 2012]. Furthermore, the weighted circumcenters of the tetrahedra of this regular triangulation in 3D (resp., triangles in 2D, see Fig. 1(left)) correspond to dual vertices of the power diagram, i.e., they are at the intersection of four power cells in 3D (resp., three in 2D). The closed-form expression of the weighted circumcenter \(c^w \) of a \(p \)-dimensional simplex \(\sigma_p \) of \(T (p=1 \ldots d) \) is:

\[c^w(\sigma_p) = x_i + \frac{1}{2 p |\sigma_p|} \sum_{x_j \in \sigma_p} (x_i - x_j)^2 + w_i - w_j) N_j^i, \] (3)

where \(N_j^i \) is the inward-pointing normal of the face of \(\sigma_p \) opposite to \(x_j \), weighted by the volume of that face.

Gauge and translation. As Eqs. (2) and (3) indicate, adding a constant shift to all the weights does not influence the diagram, so the weights are defined up to a constant. Moreover, adding a linear function \(t \cdot x \) to each weight \(w_i \) will only induce a global translation \(-t \) of the power diagram [Memari et al. 2012]. Thus, the geometry of the power diagram has a \((d+1)\)-parameter gauge.

2.2 From coordinates to power diagrams

Power diagrams have found a variety of applications in geometry processing [Mullen et al. 2011; de Goes et al. 2012; de Goes et al. 2013; Liu et al. 2013; Budynski et al. 2016] and animation [Busaryev et al. 2012; de Goes et al. 2015]. As we now review, they are also intimately linked to barycentric coordinates. Even if our exposition focuses on 2D and 3D, the results of this section are general and hold in arbitrary dimension.

Homogeneous coordinates. Given a convex polytope \(P \) with vertices \(\{v_i\}_{i=1..n} \), the **homogeneous coordinates** of \(P \) [Floater 2015] are a set of functions \(\{h_i : \mathbb{R}^d \to \mathbb{R}\}_{i=1..n} \) that satisfy the following property:

\[\sum_{i=1..n} h_i(x)(v_i - x) = 0 \quad \forall x \in P, \forall i \in \{1..n\}. \] (4)

Provided that all \(h_i(x) \) are \(C^0 \), non-negative, and with a non-vanishing sum inside \(P \), barycentric coordinates satisfying conditions (a)–(d) can be constructed via direct normalization:

\[\lambda_i(x) = h_i(x) / \sum_{k=1..n} h_k(x). \] (5)

Orthogonal duals. Now let \(x \) be an arbitrary point inside \(P \). Define a set of vectors \(n_i(x) = (v_i - x)/|v_i - x| \). For a set of homogeneous coordinates, these vectors satisfy, by construction,

\[\sum_{i=1..n} h_i(x)|v_i - x| n_i(x) \equiv \lambda_i(x) \] \(\text{Eq. (4)} \).

This relation directly implies, through Minkowski’s theorem [Klain 2004], the existence of a unique (up to translation) convex polytope \(D(x) \) in \(\mathbb{R}^d \), of which the face normals are given by the unit vectors \(n_i(x) \) and the corresponding face areas are \(h_i(x)|v_i - x| \). By construction, such a polytope is **orthogonally dual** to the triangulation \(T \) of points \(\{v_i\}_{i=1..n} \) with \(x \) and \(v_i \) connected iff \(h_i(x) > 0 \). This argument was already made in [Langer et al. 2006], but was not exploited to parameterize extended coordinates through power diagrams. We also note the similarity of this argument with the Maxwell-Cremona equivalence of self-supporting structures with 2D power diagrams used in [de Goes et al. 2013].

Conversely, given any convex polytope \(D(x) \) such that each facet \(f_i \) (with normal \(n_i \) and area \(|f_i| \)) is orthogonal to \((v_i - x) \), we have:

\[0 = \int_{D(x)} n_i(s) ds = \sum_{i=1..n} n_i |f_i| = \sum_{i=1..n} |f_i| |v_i - x| (v_i - x). \] (6)

Therefore, based on Eq. (4), the \(n \) functions

\[h_i(x) = |f_i|/|v_i - x| \] (6)

define homogeneous, non-negative coordinates. Their sum is also guaranteed not to vanish provided that \(D(x) \) is not degenerate (i.e., not reduced to a point). The geometry of \(D(x) \) then defines generalized barycentric coordinates.

Geometric equivalence. We conclude that there is a one-to-one correspondence between non-negative homogeneous coordinates at any interior point \(x \in P \) and orthogonal dual cells. This implies that we can parameterize the set of all generalized barycentric coordinates satisfying conditions (a)–(c) over a convex polytope \(P \) by the power weights as functions of \(x \). One can see this parameterization as a geometric counterpart to the analytical parameterization of [Floater et al. 2006] (we will make this link more formal in Sec. 3.4), which now generalizes to arbitrary dimensions.

Figure 1: Power coordinates. From a set of weights on the vertices \(v_i \) of a polygon (left) or polytope (right) \(P \), the power cell of a point \(x \) (with weight \(0 \)) offers a simple geometric interpretation of continuous, non-negative linearly-precise barycentric coordinates.

2.3 From power diagrams to coordinates

Our geometric characterization of generalized barycentric coordinates suggests a simple approach to both formulate and evaluate barycentric coordinates, which turns out to be linked to the notion of discrete Hodge stars on meshes.

Power coordinates evaluation. We can now explicitly describe how a convex polytope \(P \) and a given choice of weights \(w_i(x) \) can be used to compute exactly the corresponding coordinates. For a point \(x \) inside \(P \), we proceed as follows to evaluate the power barycentric coordinates \(\lambda_i(x) \):

1. From the \(n \) vertices \(v_1, ..., v_n \) of polytope \(P \), create \((n+1) \) weighted points: \((v_1, w_1(x)), ..., (v_n, w_n(x)) \), to which we add \((x, 0) \), i.e., the evaluation point with a weight of zero.
2. Compute the power diagram of these \((n+1)\) weighted points, which generates a power cell \(D \) associated to point \(x \).
3. Compute the homogenous coordinates \(h_i \) as follows: if the edge from \(x \) to \(v_i \) is present in the regular triangulation dual
to the power diagram, set: $h_i = |f_i|/|x - v_i|$, where f_i is the facet of D dual to the edge; otherwise, set $h_i = 0$.

4. Normalize the homogeneous coordinates via Eq. (5) to obtain the power coordinates λ_i at x.

Note that we assigned a weight of 0 to the evaluation point x for simplicity: weights being defined up to a constant (see Sec. 2.1), this choice has no bearing on the generality of our approach.

Implementation. The power diagram construction and the areas and lengths involved in the evaluation of the coordinates are trivially handled via the use of a computational geometry library such as CGAL [CGAL 2016]: one simply needs to use the class Regular_triangulation_3, and insert – possibly in parallel for efficiency – the $n + 1$ weighted points (see Supplemental Material for code), before reading off the geometric quantities from the resulting power diagram. For an n-vertex polytope, constructing the power diagram costs $O(n \log n)$ in 2D, and $O(n^{(d/2)})$ in dD for $d > 2$. Power coordinates are thus very easy and efficient to compute for the typically small values of n used in practice. Finally, this construction still holds on facets of P, where the dual polytope D is now unbounded in the normal direction of the facet—but all previous expressions remain valid in this limit case. This implies that evaluations of barycentric coordinates near the boundary are very stable if a robust library is used to compute power diagrams. Otherwise, a simple distance thresholding approach can be implemented to avoid numerical degeneracies.

Coordinates as Hodge stars. Suppose we pick a point $x \in P$, for which we construct the dual orthogonal cell $D(x)$ corresponding to a given choice of weights (we will provide concrete examples of weights shortly). Note that the homogeneous coordinates—and thus, the barycentric coordinates up to normalization—are expressed as a ratio of volume of dual facets of the power cell $D(x)$ and volume of their associated primal edges, see Eq. (6). In Discrete Exterior Calculus (DEC [Desbrun et al. 2008]), this expression corresponds to the edge-based Hodge star \star for 1-forms, as

$$\star 1 = \text{diag}(h_i).$$

This connection becomes obvious if one notices that Eq. (4) can be reexpressed in the DEC formalism through:

$$d_0 \star 1 d_0 X = 0,$$

where X is seen as a 0-form denoting the coordinates of the vertices and the evaluation point, and d_0 is the exterior derivative corresponding to a signed adjacency matrix. Linear precision of coordinates thus amounts to what was referred in [Glickenheat 2005; de Goes et al. 2014b] as the linear precision of the generalized Laplacian operator when using weighted diagonal Hodge stars.

2.4 Existence condition

Due to gauge invariance, we saw in Sec. 2.3 that we can always fix the weight for the evaluation point x to 0 without loss of generality. However, arbitrary assignment of other weights may not always lead to useful coordinates: given an arbitrary set of weighted points, the power cell associated with the evaluation location x may become empty. Weights must thus be chosen such that the power cell $D(x)$ corresponding to the weighted point $(x, 0)$ is non-degenerate for any $x \in P$. Thankfully, this is a simple condition to enforce.

Theorem. For a point x, the power cell $D(x)$ is not degenerate if and only if there is a vector $t \in \mathbb{R}^d$, such that

$$\|v_i - x\|^2 - w_i(x) + t \cdot (v_i - x) \geq 0 \quad \forall i = 1 \ldots n,$$

with the inequality being strict for at least one of them.

Proof: By adding a linear function to the weight (see Sec. 2.1), we can always translate the dual polytope $D(x)$ by a vector $t(x)$ in order for point x to be inside $D(x)$. Then the cell is not degenerate (i.e., not empty) if and only if the signed distances from x to the faces of this shifted dual along the corresponding primal edges are all non-negative, with at least one of them being strictly positive: this results from Eq. (2), which is now rewritten using the distance d_i between x and the power cell facet dual to edge $v_i x$ through

$$d_i = \frac{|v_i - x|^2 - w_i(x)}{2|v_i - x|}.$$

As a corollary of Eq. (7), a trivial sufficient condition for non-degeneracy of the power cell is thus

$$w_i(x) \leq |v_i - x|^2.$$

Note that this happens to be the same condition as in [de Goes et al. 2014b] in the very different context of generalizing orthogonal dual cells on non-flat triangle meshes through weights.

2.5 Properties

If the non-degeneracy condition is enforced, power coordinates have—or can easily be made to have—valuable properties beyond linear precision:

- **Non-negativity.** Since the homogeneous power coordinates are non-negative by construction, the condition of non-degeneracy discussed above also enforces that the denominator of Eq. (5) can never be zero. As a result, power barycentric coordinates are well-defined and non-negative anywhere on P.

- **Locality.** The cells of some vertices of P may not share a dual facet with the cell of x, thus resulting in zero coordinates. Our construction can thus seamlessly offer local coordinates as proposed in [Zhang et al. 2014]. Indeed, depending on the choice of weight functions, the evaluation point x can be far enough away from a given vertex v_i that they no longer share a dual facet in the power diagram. The vertex v_i then loses its influence on x since the corresponding λ_i vanishes.

- **Similarity invariance.** Invariance of coordinates to rotation, translation, and scaling of the polytope P is often desirable. Here again, we can easily accommodate these requirements. Power barycentric coordinates are rotation and translation invariant if the weights themselves are—an example being weights that are functions of geometric measures like distances or volumes. They will also be invariant under scaling of P by a factor of s if the pointwise duals $D(x)$ get uniformly scaled as well. This can be easily achieved by making sure that the input weights are of SI unit $[m^2]$ through normalization by the proper power of the volume of the polytope (or any other geometric measure). We will provide entire families of such coordinates in Sec. 4.

- **Continuity.** As can be seen from Eq. (3), a power cell $D(x)$ (and its face areas in particular) are smoothly dependent on the weights. Therefore, by choosing continuous weight functions $w_i(x)$ we automatically inherit continuity for the corresponding power coordinates.

2.6 Smoothness

Smoothness of our coordinates deserves a closer inspection as it is the least trivial property to obtain in our framework. We first define a reference connectivity which will allow us to express a sufficient condition of smoothness—and a systematic approach to render C^∞ the power coordinates derived from an arbitrary set of weights.
Figure 2: Conventions for Eq. (10) and Eq. (13), respectively.

Full-connectivity homogenous coordinates. Until now, we always derived the connectivity of the power diagram (and of its dual triangulation) based on the weights at vertices of P and on the position of the evaluation point x. However, it is common practice to define an imposed connectivity for the triangulation, and express a weighted circumcentric dual $W(x)$ for which weights are used to derive a weighted circumcenter c^w_x per simplex σ of this triangulation that are then connected into the dual W based on the adjacency between simplices: this is what was proposed in [de Goes et al. 2014b] for instance, for a given triangle mesh with a weight per vertex. The weighted circumcentric dual $W(x)$ is not necessarily embedded: flips of edges and faces are possible (see inset: red face f_i is flipped; for these weights, the power cell D would be the black convex cell, but the weighted circumcentric dual W is, instead, the polygon including the fish tail shape). In our context, we define a “full-connectivity” triangulation of $P \cup x$ to be the triangulation formed by P (after its facets are triangulated) and all the edges linking x to the vertices v_i of P. This triangulation, along with the weights $w_i(x)$ (and 0 for x), forms a Hodge star $H^w_i(x)$ per edge x_v_i, for which an explicit formulation in 2D reads [Mullen et al. 2011]

\[
H^w_i(x) = \frac{1}{2}(\cot \alpha_{i,i+1} + \cot \alpha_{i,i-1})
\]

\[
+ \frac{\cot (\alpha_{i,x} + \alpha_{i+1,x})}{2|x - v_i|^2} (w_i(x) - w_{i+1}(x)) - \frac{\cot \alpha_{x,i,i+1}}{2|x - v_i|^2} w_{i+1}(x)
\]

\[
+ \frac{\cot (\alpha_{i,x} + \alpha_{i-1,x})}{2|x - v_i|^2} (w_i(x) - w_{i-1}(x)) - \frac{\cot \alpha_{x,i,i+1}}{2|x - v_i|^2} w_{i-1}(x),
\]

where $\alpha_{x,i,i-1}$ is the angle at x in the triangle (x, v_{i-1}, v_i) as described in Fig. 2(left). The 3D version $H^w_i(\cdot)$ can be similarly assembled from the weighted circumcenters computed from Eq. (3). These Hodge star values H^w_i still form homogenous coordinates in the sense of Eq. (4), but they are not necessarily satisfying positivity. We refer to these star values as the full-connectivity homogenous coordinates.

Smoothness condition. Now that we have introduced the Hodge star edge values computed from the triangulation with full connectivity, we can express a sufficient condition for C^∞ of our power coordinates $\lambda_i(x)$.

Lemma. The power coordinates derived from weights $w_i(x)$ are C^∞ if the weight functions $w_i(x)$ are also C^∞, and if

\[
H^w_i(x) \geq 0 \quad \forall i = 1..n.
\]

Proof: Positivity of the full-connectivity homogenous coordinates H^w_i for all x readily implies that the edge x_v_i is part of the regular triangulation induced by the power diagram of the weighted vertices (v_i, w_i) of P and $(x, 0)$ [Glickenstein 2005]. Now, if every $w_i(x)$ is C^∞ and since the regular triangulation dual to the power diagram keeps the same connectivity for all x, the power coordinates are C^∞ because the signed dual facet volumes are C^∞ functions of x: only a change of connectivity in the power diagram could induce a loss of smoothness.

Smoothness correction. While the condition above is only sufficient, we can derive from it a procedure to render any set of weights C^∞: we can always shift them by a constant to meet the condition $H^w_i(x) \geq 0 \; \forall i$. Indeed, for a given d-dimensional polytope P and a set of weights, define:

\[
M = \max \left\{ 0, -\inf_{x_v_i} H^w_i(x_v_i) \frac{|x - v_i|^d}{s_i(x)} \right\},
\]

where $s_i(x)$ equals the volume of the $(d-1)$–dimensional face associated with v_i of the Wachspress dual of P times $|x - v_i|^{d-1}$. M is finite because the unitless denominator s_i is bounded away from zero: it is the volume (length when $d = 2$, area when $d = 3$) of the stereographic projection along x_v_i of the spherical $(d-1)$–polygon formed by the unit normals of the faces incident to v_i, which has a minimum of κ_i, the Gaussian curvature at vertex i, assumed to be strictly positive (see Sec. 1.1). In practice, we can find an evaluation of M by either sampling the interior of P in a preprocessing phase, or using a less tight but safe upper bound, such as $\inf_{x_v_i}(H^w_i/\kappa_i) \cdot diam(P)^d$, where $diam$ is the diameter operator, i.e., the maximum distance between pairs of vertices. Then, assuming similarity invariance is enforced (see Sec. 2.5), the SI unit of M is $[m^{d-2}]$; consequently, the use of altered weights \tilde{w}_i defined as:

\[
\tilde{w}_i(x) = w_i(x) - M^{1/(d-1)},
\]

is guaranteed to lead to smooth coordinates as their corresponding full-connectivity homogenous coordinates \tilde{H}^w_i are non-negative. Note that the weight at x is kept fixed at 0, and M depends on
the polygon shape; but the resulting λ_i is similarity invariant. This shift by M can be understood as a blend of the (non-smooth) power coordinates with the always-smooth Wachspress coordinates.

While highly application-dependent, the design of smooth, positive, and linear-precise coordinates is thus rather simple, as it only requires a few conditions on weights to guarantee relevance of the resulting power coordinates. We provide a number of examples in Sec. 4, after discussing the geometric interpretation of existing barycentric coordinates in our framework.

3 Existing Power Coordinates

Before formulating new weights, we review existing coordinates for convex polytopes to show that they correspond in our power coordinates framework to very simple choices of weights, providing straightforward extensions to arbitrary dimensions.

3.1 Wachspress coordinates

Ju et al. [2005a] noticed that Wachspress coordinates can be expressed in terms of the polar dual of the input polytope P, i.e., using a dual cell $D(x)$ for which the distance from x to a dual face f_i is $d_i = 1/|v_i - x|$. This is, in fact, a particular case of our generalized notion of dual, and using Eq. (2) we directly conclude that Wachspress coordinates are expressed in arbitrary dimensions as:

$$w_i^{\text{Wachs}}(x) = |x - v_i|^2 - 2.$$

Note that the constant 2 can be changed to any strictly positive constant: normalization (Eq. (5)) will lead to the same coordinates.

3.2 Power discrete harmonic

Discrete Harmonic coordinates [Meyer et al. 2002] are also trivially related to a notion of dual, as they are the coordinates corresponding to the canonical, circumcenter-based Hodge star. Thus, they correspond to the case where $D(x)$ is the classical Voronoi cell of x, hence to zero weights. In 3D, these null weights correspond to the coordinates dubbed “Voronoi” in [Ju et al. 2007]. However, our power diagram construction guarantees non-negativity, they are thus more directly related to the Laplace coordinates defined in [Hiroshi and Sugihara 1999]. The power form of discrete harmonic coordinates are in general not smooth, only continuous, see Fig. 4. However, note that this variant is quite different from a simple thresholding of the discrete harmonic homogeneous coordinates: instead, our power coordinates are linear precise, a property that simply discarding negative homogeneous coordinates (i.e., thresholding them to zero) would not enforce.

3.3 Mean value coordinates: old and new

The initial derivation of mean value coordinates by Floater [2003] relies on the local integration of the normal of a unit circle centered at x. While this seems unrelated to the polytopal dual cell that our construction relies on, one realizes that in fact, creating a cell $D(x)$ such that each distance d_i from x to a facet f_i of $D(x)$ is unit (or, more generally, constant) leads to the exact same normal integral as in the original derivation. This particular dual (see inset) is thus circumscribing the unit circle, and using Eq. (2) once again, we find that the weights needed to exactly reproduce mean value coordinates are:

$$w_i^{\text{MVC}}(x) = |v_i - x|^2 - 2|v_i - x|.

Again, the factor 2 can be replaced by any strictly positive constant without affecting the normalized coordinates.

Somehow surprisingly, this orthogonal dual construction with unit distances d_i leads in 3D to a very different set of coordinates: while the existing 3D extension of MVC [Ju et al. 2005b; Floater et al. 2005] relies on barycentric coordinates over spherical triangles, our homogeneous coordinates are still ratios of volumes of a straight-edge dual cell that circumscribes the unit sphere. As a consequence, the power variant happens to be significantly less distorted as demonstrated in Figs. 5 and 6. Moreover, our construction generalizes to higher dimensions in a straightforward manner since the expression of w_i^{MVC} above still holds as is.

Figure 5: Original vs. Power Mean Value Coordinates. Even on a simple parallelepiped (left), the original MVC [Ju et al. 2005b] (center) for the bottom-right corner marked with a red dot exhibits a more asymmetric behavior than our power variant (right).

3.4 3-point and 5-point coordinates in 2D

Floater et al. [Floater et al. 2006] introduced a general parameterization of barycentric coordinates by smooth functions c_i through the following homogenous expressions:

$$h_i = \frac{c_{i+1}A_{i+1} - c_iB_i + c_{i-1}A_i}{4A_iA_{i-1}},$$

where A_i and B_i are the signed areas of triangles (x, v_i, v_{i+1}) and (x, v_{i-1}, v_{i+1}) respectively, see Fig. 2(right). Assume that for a given x, the regular triangulation deriving from our power coordinates include the edges xv_i; then starting from the expression of the canonical weighted Hodge star given in Eq. (10), basic trigonometry leads to weights of the form:

$$w_i(x) = |x - v_i|^2 - c_i(x),$$

providing a simple geometric interpretation of c_i which extends to arbitrary dimensions. Note that this is not an exact equivalence: our corresponding power coordinates are guaranteed to be positive, while the original parameterization of [Floater et al. 2006] does not: as in the discrete harmonic case, our parameterization is not just a thresholding of the original homogeneous coordinates since it always enforces linear precision, which naive thresholding loses.

Three-point coordinates. Based on the relationship between their parameterization and ours, the explicit weight expressions of
4.1 Simple power coordinates

We provide next a series of new coordinates with varying degrees of smoothness, to illustrate the generality of power coordinates.

5-point coordinates. Similarly, the expressions for the 5-point Wachspress family and the two types of 5-point mean-value family are (for \(\mu \in [0, 1] \) and where angles are denoted using the conventions depicted in Fig. 2):

\[
\begin{align*}
\hat{w}_i^{\mu, 1}(x) &= |x - v_i|^2 - |x - v_i|^\mu. \\
\hat{w}_i^{\mu, 2}(x) &= |x - v_i|^2 - (1 + \mu \frac{A_{i-1} + A_i - B_i}{A_{i-1} + A_i}), \\
\hat{w}_i^{\mu, 3}(x) &= |x - v_i|^2 - \frac{(1 + \mu)\left(\sin \alpha_{i,x,i-1} + \sin \alpha_{i+1,x,i}\right)}{\sin \alpha_{i,x,i-1} + \sin \alpha_{i+1,x,i} + \mu \sin(\alpha_{i+1,x,i-1})}, \\
\hat{w}_i^{\mu, 4}(x) &= |x - v_i|^2 - \frac{|x - v_i|\cos(\mu(\alpha_{i,x,i-1} - \alpha_{i+1,x,i} + 4))}{\cos(\mu(\alpha_{i,x,i-1} + \alpha_{i+1,x,i} + 4))}.
\end{align*}
\]

4.2 Mean-Wachspress coordinates

A 2-parameter family of weights that blends Wachspress and mean value coordinates can be trivially formulated as well: for any strictly positive values \(a \) and \(b \), weight functions defined as:

\[
w_i^{\mu, MW}(x) = |v_i - x|^2 - a \frac{|x - v_i|/|P|^{1/4}}{d_i},
\]

will induce power coordinates, where the volume \(|P|\) of \(P \) is raised to the inverse of the dimension to enforce similarity invariance. These weights always produce \(C^\infty \) coordinates: since they are formed as a combination of Wachspress and mean-value homogeneous coordinates that are strictly positive inside \(P \); thus, the sufficient condition of smoothness discussed in Sec. 2.6 is guaranteed to hold. Fig. 7 illustrates a few of these coordinates in 2D.

4.3 Anisotropic power coordinates

While all the choices of weights presented so far used Euclidean geometric measures such as distances or areas, they can be easily extended to incorporate anisotropy through a norm defined by \(|x|_G = \sqrt{x^T G x}\) for a constant, symmetric positive definite matrix \(G \). This anisotropic norm allows us to tailor our barycentric coordinates quite directly by substituting the Euclidean norm \(|\cdot|\) by \(|\cdot|_G\) in previous formulas. In particular, weights of the form \(w_i(x) = |v_i - x|^2 - \tilde{w}_i(x) \) induce anisotropic barycentric coordinates while staying similarity invariant if the distances used in \(\tilde{w}_i(x) \)'s are modified to be anisotropic. Note that this treatment is reminiscent of the creation of anisotropic Hodge stars (i.e., [de Goes et al. 2014a]) due to the interpretation of coordinates as Hodge star values mentioned in Sec. 2.3.

Anisotropic mean value coordinates. The anisotropic variant of mean value coordinates is particularly interesting, as it has a nice geometric interpretation. Indeed, we define its weights as:

\[
w_i^{\mu, AMVC}(x) = |v_i - x|^2 - 2|v_i - x|_G.
\]

(Notice that unlike Eq. (15), there is no need to divide by the volume of \(P \); similarity invariance is automatically enforced by the normalization step.) Based on Eq. (2), the distance from the evaluation point \(x \) to the facet of \(D(x) \) that is dual to edge \(xv_i \) is:

\[
d_i = \frac{|v_i - x|_G}{|v_i - x|}.
\]

We claim that this particular set of distances \(d_i \) can be geometrically constructed as follows. For a given evaluation point \(x \), construct a secondary polytope \(\tilde{Z} \) with vertices \(x \), that are at the intersection of the rays \(xv_i \), and the ellipsoid defined by the set of points \(y \) such that \(|y - x|^2 G(y - x) = 1\). The new polytope is trivially convex, and the new vertices \(z_i \) are expressed as:

\[
z_i - x = \frac{v_i - x}{|v_i - x|_G}.
\]
coordinates are also notAx = b

soning, and because Wachspress coordinates are such that w

Anisotropic mean-Wachspress coordinates. The resulting barycentric coordinates (see Figs. 10 and 12(right)) are visually and numerically smooth. While we do not know how to analyze or explicitly formulate the resulting coordinates, note that they come from a repeated “barycentric” averaging of weights, which may allow us to algorithmically define weights in such a way that the resulting coordinates satisfy possibly-intricate implicit relations—maybe even differential relations.

Figure 10: Iterated power coordinates. From arbitrary C0 coordinates (top), 3 iterations of Eq. (18) result in smooth coordinates.

5 Extensions to Non-Convex Polytopes

The link between homogeneous coordinates and orthogonal duals partially extends to the case of non-convex polygons and polytopes, in particular if we remove the positivity constraint (c).

5.1 Signed coordinates on non-convex 2D polygons

In \(\mathbb{R}^2 \), there is still a 1-to-1 correspondence between homogeneous coordinates and weighted circumcentric dual cells \(\mathcal{W}(x) \) described in Sec. 2.6, created as the dual of \(x \) for the simplicial \(d \)-manifold with a “full connectivity” linking \(x \) to the vertices of \(\mathcal{P} \). Indeed, for any set of functions \(h_i(x) \) satisfying Eq. (4), the 2D vectors \(f_i(x) = h_i(x)(x_i - x)/|\mathcal{P}|^{1/4} \), where \(\mathcal{P} \) denotes a closed loop, thus defining the boundary of an orthogonal dual cell \(\mathcal{W}(x) \) with possible self-intersections (see inset in Sec. 2.6). The converse is also true: given any orthogonal dual \(\mathcal{W}(x) \), \(h_i(x) \) defined through the signed diagonal Hodge star would satisfy Eq. (4). Thus, through the weighted circumcentric dual, all homogeneous coordinates \(h_i \) have a one-to-one correspondence to an assignment of \(w_i \) up to a constant gauge. Note that the homogeneous coordinates can now be negative as a consequence, thus violating condition (c). Replacing the power cell \(D(x) \) by the weighted circumcentric dual \(\mathcal{W}(x) \) in our approach recovers the traditional 2D mean value coordinates, which are valid (but often with negative coordinates) on arbitrary polygons.

5.2 Signed coordinates on non-convex 3D polytopes

The 3D case is more involved for two reasons. First, even though there is still a 1-to-1 correspondence between power cells and
coordinates for the evaluation point
polytopes. For instance, in order to eval-
condition (d): the power cell itself can exhibit discontinuous be-
change their relative configuration as the evaluation point moves
havior because the visibility vectors connecting \(x \) to vertices \(v_i \)
around a non-convex polytope. Second, if we remove the positivity
constraint, the resulting arbitrary homogeneous coordinates are
not fully characterized by our weighted circumcentric construction:
while Minkowski’s theorem guarantees the existence of a convex
orthogonally dual polytope from a sequence of (possibly flipped)
normals, such a polytope is no longer necessarily a weighted cir-
cumcentric dual. As a consequence, a truly general extension of
power coordinates for non-convex polytopes remains open. Nev-
evertheless, our weighted circumcentric approach still spans valid
homogeneous coordinates that are potentially negative, leading to
signed barycentric coordinates if their sums \(\sum h_i \) are bounded
away from zero; e.g., we can recover well-known coordinates such as
the Voronoï coordinates in 3D mentioned in [Ju et al. 2005a].

5.3 Positive-power mean value coordinates.

If one still requires true generalized barycentric coordinates satisfying
all the conditions (a)-(d), our geometric characterization of coordinates over convex polytopes – in particular, our use of a sec-
ondary polytope in Sec. 4.3 – suggests a simple way to extend
power coordinates to non-convex polytopes: one can construct a
secondary polytope by smoothly displacing the original vertices de-
pending on the evaluation point. We can indeed alter the position of
the vertices to make the modified polytope star-shaped with re-
spect to the evaluation point; using the mean value weights given in
Eq. (12), we can still construct a non-degenerate power cell which
will be, by definition, still circumscribed to the unit sphere, but
that may involve only a subset of the vertices of the non-convex
polytopes. For instance, in order to evalu-
ate positive generalized barycentric co-
dinates for the evaluation point \(x \) inside
the 7-vertex non-convex polygon displayed in the inset, the pink poly-
gon is used. This star-shaped polygon is found by ignoring the obstructed ver-
tex \(v_5 \) blocked by the concave vertex \(v_6 \), and by displacing vertex \(v_4 \) to a mod-
ified position \(\tilde{v}_4 \) along the edge \(v_3v_4 \).
(Note that it corresponds to the visible portion of the polygon used
in the positive MVC coordinates [Lipman et al. 2007].) This con-
struction, once the barycentric coefficients are redistributed to the
displaced vertices, results in true coordinates, without discontinuity
due to visibility as demonstrated in Fig. 11. The ensuing coordinates
are thus both local (in the sense advocated in [Zhang et al.
2014]), and positive [Lipman et al. 2007], but require no quadrature
to evaluate – making them particularly well suited to cage-based de-
formation of meshes. We leave implementation details and analysis
of this construction in 2D and 3D to a forthcoming paper.

6 Future Work

Our characterization of coordinates based on power duals opens
a number of avenues for future work. We mention a few in lieu
of a conclusion to illustrate both the current limitations of power
coordinates and the opportunities that our work offers.

Theoretical developments. Given the generality of power coordi-
nates, finding necessary conditions on the weights for smooth-
ness, deriving simple and efficient evaluations of their derivatives,
or proving contraction for iterated power coordinates are examples
of results that could have very practical consequences. The use of
power coordinates to define higher-order Whitney basis functions
using the work of Gillette et al. [2016] is also of great interest.

Harmonic coordinates. Coordinates issued from partial differential
equations have not found wide acceptance due to the memory
footprint required by the storage of solutions, despite the clear ad-
antage of being positive on arbitrary polygons. A natural question
is whether the additional insight afforded by power coordinates can
result in an explicit or iterated formulation (see Sec. 4.4) which
could be evaluated without the need for precomputed solutions.

Bézier patches. Non-negative barycentric coordinates over poly-
topes have been shown crucial to offer multisided Bézier patches
in [Loop and DeRose 1989], and recently in [Varady et al. 2016].
Rewriting their construction in the context of power coordinates may
help in providing fast evaluations of these general patches.

Coordinates on non-convex polytopes. Although we showed how
our construction extends naturally to non-convex polytopes, we
have only scratched the surface of what can be accomplished for
this case. Understanding a general construction with the same effi-
iciency of evaluation is an obvious future work.

Transfinite interpolants. Finally, the notion of power diagram for
poinsets extends to continuous power diagrams of curves, which can be computed rather efficiently [Hoff et al. 1999]. Consequently, our construction will converge as a polytope is refined to cap-
ture a smooth shape (inset: example of power Voronoï dual for 3D bean shape). This exten-
sion is similar to the transfinite form of Sibson’s interpolant [Gross and Farin 1999], and closed-
form solutions of specific choices of weight functions are possible and could offer valuable
new transfinite interpolants as well.
Acknowledgements

We are indebted to Fernando de Goes and the reviewers for their feedback. This work was partially supported through NSF grants CCF-1011944, IIS-0953096, CMMI-1250261 and III-1302285. MD gratefully acknowledges the Inria International Chair program CCIF-1011944, IIS-0953096, CMMI-1250261 and III-1302285.

References

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Variational harmonic maps for space deformation. ACM Trans. Graph. 28, 3 (July), Art. 34.

Figure 12: More 3D coordinates. Left: anisotropic mean value coordinates for $G = \text{diag}(5\cos^2(10x) + 1, 1, 1)$. Right: iterated power coordinates from Eq. (18) in 3D.

A Lagrange & Facet Restriction Properties

We here show that conditions (a)-(d) imply properties (e) and (f) for the case of convex polytope P with vertices $\{v_i\}_{i=1..n}$ in arbitrary dimension. As a consequence of (a) and (b), we have $\sum_{i} \lambda_i(x)(v_i - x) = 0$. When evaluating at a vertex v_j, one gets:

$$\sum_{i=1..n, i \neq j} \lambda_i(v_j)(v_i - v_j) = 0$$

Since all vertices are extreme points of the polytope, a convex combination of vectors $(v_i - v_j)_{i \neq j}$ is zero if and only if all the coefficients are zeros, i.e., $\lambda_i(v_j) = 0$ for $i = 1..n, i \neq j$: indeed, there exists a direction at v_j along which all vectors $(v_i - v_j)_{i \neq j}$ have positive components. Using condition (a), we conclude that the Lagrange property (e) holds, i.e., $\lambda_i(v_j) = \delta_{ij}$.

As for condition (f), we can construct a coordinate system such that a given boundary facet contains vertices with their first coordinates at 0, and such that all other vertices have positive first coordinates due to the convexity of P. Thus, similar to the previous argument, property (f) reflecting the restriction of coordinates to the boundary facets follows from conditions (a)-(d) since a positive linear combination of positive numbers must be a positive number.