
Progressive Compression for Lossless Transmission of Triangle Meshes

Pierre Alliez � Mathieu Desbrun †

University of Southern California

Abstract
Lossless transmission of 3D meshes is a very challenging and
timely problem for many applications, ranging from collaborative
design to engineering. Additionally, frequent delays in transmis-
sions call for progressive transmission in order for the end user to
receive useful successive refinements of the final mesh. In this pa-
per, we present a novel, fully progressive encoding approach for
lossless transmission of triangle meshes with a very fine granu-
larity. A new valence-driven decimating conquest, combined with
patch tiling and an original strategic retriangulation is used to main-
tain the regularity of valence. We demonstrate that this technique
leads to good mesh quality, near-optimal connectivity encoding,
and therefore a good rate-distortion ratio throughout the transmis-
sion. We also improve upon previous lossless geometry encod-
ing by decorrelating the normal and tangential components of the
surface. For typical meshes, our method compresses connectivity
down to less than 3.7 bits per vertex, 40% better in average than
the best methods previously reported [5, 18]; we further reduce
the usual geometry bit rates by 20% in average by exploiting the
smoothness of meshes. Concretely, our technique can reduce an
ascii VRML 3D model down to 1.7% of its size for a 10-bit quanti-
zation (2.3% for a 12-bit quantization) while providing a very pro-
gressive reconstruction.

Keywords: Triangle Mesh Compression, Progressive Transmis-
sion, Connectivity Encoding, Geometry Encoding, Levels of De-
tails, Mesh Decimation.

1 Introduction
With the growth of e-commerce and entertainment over the inter-
net, the rapid transmission of 3D computer models becomes essen-
tial. Both virtual shopping malls and virtual worlds require massive
transmissions of triangulated 3D geometric data over the network.
In this paradigm, geometry is bound to become as commonplace
as text, sound, pictures, or videos. Turning a geometric object
into a bit stream is therefore a very timely and relevant problem.
However, signals such as sounds, pictures, or movies can rely on
Fourier analysis to determine their theoretical entropy, indicating
what compression ratio can be achieved. Unfortunately, in the case
of a 2-manifold in 3D, we do not have any theoretical results to
measure how close to the theoretical compression limit we are: sur-
faces are almost impossible to analyze with the current mathemat-
ical tools due to irregular valences, non-uniform sampling, and the
added notion of topology. Designing a new compression algorithm
is therefore all the more fundamental as it gives a better understand-
ing of what is the real information content of a surface.

�alliez@usc.edu
†desbrun@usc.edu

Figure 1: Our compression technique progressively transmits an arbitrary triangle
mesh vertex by vertex. With (bottom) or without (top) the use of a metrics to drive
the vertex ordering, we maintain good mesh quality and good rate-distortion ratio all
along the transmission.

Since data transmission is a transaction between a client and a
server, we must take the user’s needs into account to judge the opti-
mality of a compression algorithm, and not only the pure informa-
tion theory side of it. An end user may not be very concerned about
technical aspects like the bit rate, instead she is likely interested in
getting a perceptually good geometric quality in the best time pos-
sible. If the server provides data using a single-rate coding, i.e.,
sending serially vertex after vertex, the user cannot judge the perti-
nence and quality of the information sent until the full transmission
is achieved. This leads to a loss of time (and patience) on the user
side, and a loss of network bandwidth for the server. The key idea
to address this issue is to use progressive coding, where data are
sent in a coarse-to-fine way. Optimizing the quality now equates to
an optimization of the rate/distortion ratio.

Concretely, progressive compression requires the transmission
of a very coarse approximation first, followed by subsequent bits
that allow the progressive addition of more and more details. This
process will allow the user to get an early grasp of the geometry.
An ideal progressive lossless coder should reach the same rate as a
single-rate one when the transmission is over, with a minimal gran-
ularity so that each new bit received by the decoder may be used to
refine the current decoded mesh. Thus, progressive coding can be
seen (again, ideally) as a simple reshuffling of the data. As recov-
ering original connectivity and vertex position is very important for
engineers, scientists, and for interactive collaborative design among
other industrial applications, we focus on the design of a novel ap-
proach to progressive, lossless encoding of arbitrary meshes to try
to narrow the current significant gap in bit ratio between single-rate
and progressive encoding methods.

A mesh compression algorithm must compress two kinds of in-
formation: the connectivity (adjacency graph of triangles) and the
geometry (positions of the vertices). These two types of data are not
totally independent, since the Gauss-Bonnet theorem for instance
states a necessary condition between geometry and topology of a
surface. However, since this condition is global, it is safe and con-
venient to consider them separately. In order to present how we can
optimize the compression ratios of both geometry and connectivity,
we first review the previous work in this domain.

1.1 Previous Work

We first briefly mention some of the single-rate coding tech-
niques currently known, since they offer insight into compression

Mathieu Desbrun
Note
Appeared in ACM SIGGRAPH 2001http://www.geometry.caltech.edu/



of 3D objects. The reader can find a more detailed overview in [27].

Most of the initial mesh compression techniques use trian-
gle strips as their encoding strategy [6, 2, 26], and/or vertex
buffers [10]. The EdgeBreaker algorithm [20], however, uses a
different strategy: it turns a mesh into a sequence of five-symbol
strings using an edge conquest. Using this method a guaranteed
3.67 bit/vertex rate for connectivity is presented in [14]. A very
efficient decompression of an EdgeBreaker code is introduced in
[21], while a better rate for regular models is proposed in [24].

For the last three years, most papers refer (and use) the Touma
and Gotsman algorithm [28] as the best single-rate encoder in terms
of compression ratio, especially for regular meshes. This technique
defines an edge-centered conquest, creating one valence code per
vertex, and some additional, yet significantly less frequent codes:
dummy for boundaries, split whose frequency is closely related to
mesh irregularity, and merge for genus greater than 0. The ordered
list of all valences and codes generated during the conquest are
then processed by entropy encoding. The decoder simply repro-
duces the conquest according to the flow of valences sent. This
technique results in amazingly low bit rates on very regular meshes
(valence 6 almost everywhere), since the list is basically a string
of sixes, containing almost zero entropy. Recently in [1], the same
valence-driven approach is improved upon; more importantly, en-
coding only valences is proven to lead to the optimal bit rate per ver-
tex for arbitrary connectivity, explaining the success of the valence-
based techniques.

As for the progressive encoders, Hoppe introduces in [11] an al-
gorithm for progressive transmission, starting from a coarse mesh
and inserting vertices one at a time. It uses the edge collapse topo-
logical operator in order to decimate and record a sequence of ver-
tex split encodings. The granularity is optimal, but encoding each
split requires log2(#v) bits both to localize the vertex to split and
several bits to still locate its two incident edges to cut. A method
called Progressive Forest Split Compression is proposed by Taubin
et al.in [25], using a base mesh and a forest of vertex splits. Pajarola
and Rossignac [18] group vertex-split operations into batches, then
traverse the mesh and specify splits by marking each vertex using
one bit, leading to an amortized cost of less than three bits per vertex
for the marking process. They encode the inverse edge collapse op-
eration by indicating the two edges cut during the vertex split. The
geometry is encoded using a butterfly-like prediction approach, but
the faster version of that method [19] returns to a simpler predic-
tor for geometry. The connectivity of typical meshes is compressed
down to approximately 7.2 bits per vertex.

Leading to an even better bit rate, Cohen-Or et al. [5] propose
to alternate between a 2- and 4-coloring technique to decimate the
mesh. The choice of the coloring is driven by the distribution of
valences in a given level of detail. The authors use vertex removal
and a deterministic (or geometric) angle-driven retriangulation. Un-
fortunately, the inside Z-triangulation leads to degenerate meshes,
i.e. with long thin triangles. The authors try to compensate for the
degeneracy through an immediate 2-coloring pass. However, com-
pared to [18], the geometric quality of the progressive mesh remains
worse. On the other hand, they achieve up to 15% better compres-
sion rates. Here again, these results cannot compete with single
rate methods [28, 20] since their techniques basically increase the
dispersion of valence due to the retriangulation.

For encoding the geometry, most papers use prediction, quan-
tization and arithmetic coding. Khodakovsky et al. [13] point out
the great importance of normal versus tangent decomposition of the
relative position for bit allocation in geometry. Devillers and Gan-
doin [8] totally suppress the order of the vertices, assuming that
a geometry-centered triangulation [3] is later able to progressively
rebuild the connectivity from the regularity of the point cloud trans-
mitted. Snoyeink et al. [23] and Denny and Solher [7] stress that

any data already transmitted have defined an implicit order which
can be used to save significant entropy.

Since compression ratios and geometry quality are intricately re-
lated, King and Rossignac [15] and Khodakovsky et al. [13] really
look at 3D compression as a rate/distortion problem, rather than
from a pure rate viewpoint. Note that [13] obtains the best geom-
etry compression ratios by far, but through a complete remeshing
of the 3D surface, which is definitely the best thing to do if only
the visual aspect of a surface needs to be transmitted. On the other
hand, we propose in this paper a lossless encoder, that will transmit
an arbitrary mesh in full, yet in a progressive way.

Figure 2: Left: an optimal independent set of patches, tiling the mesh. Right: a
non-optimal independent set of patches with white-colored null patches.

1.2 Overview

From the exploration of previous encoders, we make the following
simple observations. 1) A deterministic conquest avoids an explicit
transmission of order over the vertices. It implicitly builds an order
that the coder and the decoder will agree on. If we want the ge-
ometry to also be progressive, this conquest must depend uniquely
on connectivity. 2) An optimal progressive connectivity encoder
should generate one valence code per vertex of the original mesh,
in any order. This will achieve ”minimal” entropy as we know it
from [1]. 3) Decimation quality and compression ratio do not seem
to be mutually optimizable. Although a perfect decimation is not
crucial, care needs to be taken in order to avoid any mesh degenera-
cies.

Our contributions are built upon these observations. We propose
a novel method for the progressive, lossless encoding of meshes,
aiming at getting as close as possible to the single-rate compres-
sion ratios. We use the minimal granularity for both connectivity
and geometry, i.e., we decimate (resp. insert) only one vertex at a
time during the encoding (resp. decoding) phase. In a nutshell, the
encoding algorithm can be roughly described in two stages:

� A valence-driven decimating conquest constructs an indepen-
dent set of patches (1-rings), alternating between two very
simple strategies. Each patch center vertex is then removed,
and the patch gets strategically re-triangulated to promote a
balanced valence everywhere. We refer to this 2-step decima-
tion as the 3-to-1 (or inverse

p
3) simplification for reasons

that will be made clear in Section 3.5 (see Figure 11).

� The list of valences of the removed vertices (plus some ”cos-
metic” codes) is then compressed by a code simplification
method that simulates the decoding process to suppress re-
dundancies and a subsequent adaptive arithmetic encoder.

The remainder of this paper details this algorithm, and is articu-
lated as follows: in Section 2, we give conventions and definitions
of terms we will use during the description of our algorithm in Sec-
tion 3, which details the decimation strategy, the patch conquest,
and the patch retriangulation. Section 4 will explain how the end
user can easily and efficiently decode the bit stream previously en-
coded. We detail geometry encoding in Section 5, and give multiple
results in Section 6 to show both the quality of the hierarchy trans-
mitted and the rate achieved, between 30% and 40% better than
previous progressive encoders. We finally give conclusions in Sec-
tion 7.



1 input gate
(n-1) output gates

1 input gate

2 output gates

Ordinary patch (degree n) Null patchGate

front vertex

front face

v1

v2

Traversal

Gate

Face orientation

Figure 3: Left: a gate is defined by its oriented edge. Each gate stores a reference to
its front face and its front vertex. Right: the gate item allows the conquest to achieve
the mesh traversal through ordinary or null patches.

2 Definitions
In this section, we briefly describe some relevant definitions we
will use throughout this paper. When necessary, we define a
graphics convention for each of these definitions to enhance the
clarity of the figures.
- Patch: a degree-d patch is a set of faces incident to valence-d
vertex (Figure 4.A).
- Vertex removal: operation consisting in removing a vertex and
its incident triangles, and subsequently remeshing the remaining
hole (Figures 4.B and 4.C).
- Independent set: a set of patches on a mesh where each face
belongs to at most one patch. An optimal independent set is
achieved when each face of the mesh belongs to exactly one patch
(Figure 2.A): the patches then tile the mesh completely.
- Null patch: a face that does not belong to any patch. This occurs
when a mesh is not completely tiled by the patches. Null patches
are colored in white on Figure 2.B.
- Gate: an oriented edge, storing a reference to its front face (see
Figure 3). A gate allows us to go from one patch to an adjacent one
during a mesh traversal.
- State flags: each face and vertex can be tagged free, conquered
or to be removed, depending on their current state.
- Retriangulation tags: each vertex can be assigned a minus
	 or a plus � according to whether one wants to strategically
minimize their valence or to maximize it respectively during a
retriangulation. These tags are displayed on our figures when it is
required.

A B C

Figure 4: A: a degree-5 patch. B: removal of the middle vertex. C: retriangulation
of subsequent hole.

3 Progressive Connectivity Encoding
In this section, we detail the core of our progressive encoding algo-
rithm. We explain how a valence-driven conquest, similar in spirit
to [1], allows us to decimate a mesh layer by layer using vertex re-
movals, while both maintaining a good mesh quality throughout the
simplification and guaranteeing near-optimal compression ratios.

3.1 Decimation/Coding Trade-off

Progressive transmission implies model simplification. We there-
fore have to define a decimation strategy that will drive our en-
coder. Decimation techniques usually need an atomic decimation
operator, an error metric, and a set of topological constraints. In
our case, the most appropriate decimation operator is vertex re-
moval, since it corresponds to the finest granularity of the mesh,
therefore inducing the most progressive decimation. Unfortunately,
the use of error metrics in reliable decimation algorithms (for in-
stance [9, 12, 17]) leads to almost random vertex removals on the

mesh. Coding the random access of such a decimation would be
extremely costly compared to a single-resolution conquest [28, 1],
since it requires the coding of a localization in a large set of ver-
tices. Moreover, we would prefer not to rely heavily on geometry-
centered decisions during the decoding process since we seek in-
dependence between connectivity and geometry encoding. It thus
seems that one cannot have an optimal decimation and an optimal
connectivity encoding at the same time. Our goal to obtain the best
rate/distortion ratio at any time during the transmission presents us
with a delicate tradeoff. This naturally led us to investigate whether
a valence-driven decimation would be more appropriate.

3.2 Valence-driven Decimation

Importance of Low Valence Vertices

We first make the following simple observation: removing a vertex
with a valence greater than six (resp., lower than 6) from a trian-
gle mesh and remeshing the subsequent hole leads to an increase
(resp., a decrease) in the sum of the valences of the remaining ver-
tices. This is a direct consequence of the Euler formula. If we write
V 0 the new sum of valences after one valence-v vertex removal and
a local remeshing, and V the original sum of all valences excluding
this vertex, we have: V 0 =V +(v�6). Therefore, a vertex removal
leads to a systematic change in valence distribution, as shown in
Figure 5. Using the connectivity entropy analysis described in Sec-
tion 1.1, we thus claim that removing a vertex of valence more than
six increases entropy: the data excursion of the list of valences glob-
ally increases, resulting eventually in a lower compression rate. It
is therefore a bad strategy in a compression algorithm seeking the
lowest bit cost.

3

7
7

8

6 8

6

6

5 5 6

5

65
6

6

6

7
5

6

6
6

7

6

5

7 5 5

7

56
5

7

5

8
4

7

Vertex removal and retriangulation

-3 0 +2

Figure 5: Influence of a vertex removal on the sum of the valences of remaining
vertices: only removals of vertices with valence less than six decrease the sum of re-
maining valences.

Additionally, our experiments have shown that removing a high
valence vertex often leads to two major inconveniences, indepen-
dent of the error metrics chosen. First, it creates badly shaped tri-
angles (even using a Z-triangulation as in [5]) if no local geometry
adjustment is done after the removal, while low valence vertex re-
movals are much safer. Second, a large valence vertex removal is
more likely to violate the manifold property or to change the topol-
ogy of the surface. We thus strongly advocate, as already done
in [7], for the removal of the vertices of valence� 6 (� 4 on bound-
aries) since it maintains a low statistical valence dispersion around
the average value 6. Such a simple decimation strategy provides
an appropriate trade-off between mesh quality and valence excur-
sion. However, we need to deal with a few topology and geometry
constraints to ensure good decimation.

Safety Conditions for Vertex Removal

A vertex removal can safely be performed only if it does not violate
the manifold property of the surface. However, to make our method
more flexible, we let the user select other types of conditions that



may be desirable. Among the vertices of valence � 6 encountered
during the conquest and potentially removable, we forbid:

� vertices whose removal leads to violation of the manifold
property of the mesh, i.e. when the corresponding remesh-
ing process would create already existing edges.

� vertices whose removal leads to a normal flipping locally; we
let the user enable or disable this option according to the de-
sired tradeoff between quality and compression rates, since
the normal flipping is not an issue for the encoder, but may be
one for the user.

� vertices violating any metrics-related decision designed by the
user; simply put, one can decide at any point if a vertex can be
removed or not in order to tune the quality of the progressivity.
In essence, the decimation algorithm is open to any metrics
that would make a better rate/distortion tradeoff for a given
application. As mentioned before, this flexibility in quality
will obviously result in an additional bit cost.

This valence-driven decimation is very flexible, since any or no
error metrics can be used. To prove that using only the valence is
safe even without error metrics, all the examples in this paper (ex-
cept for the fandisk on Figure 1, bottom) do not use any other error
metric other than a decimation purely driven by valence. Figure 1
(top) illustrates such a decimation down to an eight-vertex polyhe-
dron.

For objects with specific geometric characteristics like sharp
edges, a geometry-driven decimation can substantially improve the
perceptual rate-distortion dramatically. As we mentioned, one can
skip some important vertices by just sending null patch codes if
these particular vertices may better remain present at this stage.
We designed a very simple metrics-based decimation mode where
each vertex is first checked for validity. We experimented with two
metrics-based tests: one based on a vertex-to-patch distance, and
one based on the volume embedded between a patch and its retri-
angulated version (and the area change for boundaries) as depicted
in Figure 6. The latter is similar in spirit to [17], except that we use
a binary decision for each vertex removal. We normalize the vol-
ume error as following: error = 3

p
(volume)=(perimeter=degree)

so that the same threshold can be used for all the scales. Figure 1
(bottom) shows an example of the fandisk mesh decimation using
the volume-based metric and a threshold parameter set to 0:25.

volumevertex-to-patch
distance

area change

removed vertex 
(valence 4)

removed vertex 
(valence 3) valence 3

Volume-based metric
(ordinary case)

Distance-based metric
(ordinary case)

Surface-based metric
(boundary case)

perimeter

perimeter

boundary

Figure 6: Left: the vertex-to-patch distance, normalized by the patch perimeter, is a
possible error metric. Middle: Better results can be achieved by an error metric defined
by the volume included between the original patch and the retriangulated one, still
normalized by the patch perimeter. Right: the area change error metric is computed
for a boundary vertex.

3.3 Overview of the Algorithm

Now that our notion of decimation is selected, we can describe the
outline of the encoding algorithm. The key idea is that in an ori-
entable manifold, faces incident to a vertex can be ordered. Con-
sidering an arbitrary set of patches, any vertex removal followed
by a local retriangulation of the patch leaves the patch borders un-
changed (see Figure 4). Therefore, these borders can be known by

Figure 8: Null patch during conquest - A: the conquest cannot reach an optimal
independent set (null patches are colored in white). B: this null patch has been created
when the red gate is popped out from the queue. Its front vertex is already conquered,
a code null patch(N) is therefore output, its front face becomes conquered, and subse-
quently its two adjacent gates are pushed onto the queue. C: same behavior when the
(newly popped) red gate becomes active.

both the encoder (that has the original patch) and the decoder (that
has the patch now retriangulated, but with the same borders). As
a logical consequence of what we have presented, we can create a
decimating conquest that decimates vertices of valence less than six
encountered along the way, while isolating them in patches to leave
the borders intact. For reasons that will become obvious in the two
following sections, we alternate such a decimating conquest with
a cleaning conquest, targeting valence-3 vertices only. This will
guarantee an overall nice 3-to-1 decimation.

3.4 Decimating Conquest

Our decimating conquest uses the notion of a gate described in Sec-
tion 2 as the base tool in order to traverse the mesh and collect ad-
jacent patches. We start with an initial seed gate arbitrarily chosen
among the edges of the original mesh. This gate (g1 in Figure 7),
is pushed onto a first-in-first-out (fifo) queue after we flag its two
vertices as conquered. We then pop the gate out of the queue, and
consider the three following cases:

1. if its front face is tagged conquered or to be removed: There
is nothing to do, since the patch we enter has already been or
cannot be conquered. We discard the current gate, and pro-
ceed to the next gate available on the fifo queue.

2. else, if its front vertex is free and has a valence � 6: The cor-
responding patch will be decimated and retriangulated. The
front vertex is flagged to be removed, its neighboring ver-
tices are flagged conquered and its incident faces are flagged
to be removed. The symbol v corresponding to the valence of
the removed vertex (or equivalently, the degree of the patch’s
boundary polygon) is output, and the v� 1 output gates are
generated and pushed to the fifo queue. We discard the cur-
rent gate, and proceed to the next gate available on the fifo
queue. Figure 10(a) and Figure 7 illustrate this general be-
havior of the conquest.

3. else, (if its front vertex is free and has a valence > 6)
or (if its front vertex is tagged conquered): The front

face must be a null patch; we declare it conquered, a code
null patch is generated and the two other output gates of the
triangle are pushed onto the fifo queue (see Figure 8). We dis-
card the current gate, and proceed to the next gate available
on the fifo queue.

3.5 Patch Retriangulation
We must now provide a completely deterministic remeshing strat-
egy to fill up the patches after each vertex removal, since the de-
coder must be able to still find the original borders of the patches.
To guarantee a nice remeshing, we designed an adaptive patch retri-
angulation process driven by a vertex-tagging procedure that allows
us to maintain, at no extra cost, a good mesh quality during the dec-
imation while keeping the deterministic behavior. The underlying



Figure 7: Standard conquest - A: g1 denotes the first seed gate pushed into the fifo queue. This gate can conquer the patch of its free front vertex. This valence-5 vertex and its
adjacent faces are flagged to be removed. Every patch border vertex becomes conquered, four gates are pushed in counterclockwise order into the gate queue and a code 5 is output.
B: g2 becomes active, its valence-6 front vertex becomes to be removed, the patch’s vertices are flagged conquered, five gates are pushed into the queue and a code 6 is output.
C: code 6 patch; D,E: Same behavior, two successive codes 6 being output. F: Eventually, all vertices become either to be removed (center of patches) or conquered (borders of
patches), colored respectively yellow and grey. The queue is now empty.

idea is to keep the valence distribution as compact as possible: as
we will show, our patch retriangulation leads to a perfect 3-to-1 (or
”
p

3
�1

”) simplification if the mesh is regular, and to a good triangu-
lation otherwise.

Each vertex is tagged either	 or� during the conquest, depend-
ing on whether it is desirable to locally minimize or maximize its
valence during the remeshing of its adjacent patches. At the be-
ginning of the conquest, the right and the left vertex of the seed
gate are flagged � and 	 respectively. Then, using the tag table
shown in Figure 9, we retriangulate the patch and tag its vertices
accordingly. We will see during the description of the decoder (see
Section 4) that it will allow us to find the borders of a retriangulated
patch automatically as soon as the valence of the decimated middle
vertex is known. Now, for the subsequent gates, their two vertices
will already be tagged, and just a quick look at the table according
to the tags on the gate allows us to tag the rest of the new patch
entered.

3 4
5 6

input gate

re
m

es
hi

ng

Figure 9: Adaptive retriangulation process from degrees 3 to 6. The input gates
are colored in red, the remeshing decision being only taken from the tags of their two
vertices.

There may be clashes between tags as we conquer more and
more patches: if most of the vertices of a patch have already been
tagged, we may not be able to have a configuration similar to our
table. In this case, we keep the tagged vertices with their original
tag, but we triangulate the patch according to the table anyway, and
assign the vertices still untagged with the tags from the table. Since
the decoder is able to do the same operations (see Section 4 and
Figure 9), we keep the deterministic behavior of our retriangulation
and suppress any further ambiguities.

The previous remeshing strategy has encouraged on average one
out of two vertices on a patch border to be of low valence. As a con-
sequence, our mesh will be now be littered with valence-3 vertices.
Our remeshing strategy may therefore seem to be counter-intuitive
since we sought to reduce the statistical valence dispersion around
the value 6. However, it turns out that a cleaning conquest right
after a decimating conquest will in fact improve the mesh consider-
ably, and result in the promised valence balance.

3.6 Cleaning Conquest

The cleaning conquest is almost exactly the same as the decimat-
ing conquest, previously defined. The main difference lies in the
gates we put in the queue. As it can be noticed in Figure 11.B,
the valence-3 patches are now separated by a triangle in the regu-
lar case. Therefore, we modify the conquest to put some gates not
directly on the border of the current patch, but on the two edges of
every face adjacent to the border, and we flag those faces as con-
quered (see Figure 10(b)).

(a) Decimating conquest - valence 3 to 6 patches (b) Cleaning conquest
(only valence 3 patches)

conquered

conquered

Figure 10: (a) Mode used during the decimating conquest. Each edge from the
patch boundary (but the input gate) is pushed as a gate to the fifo queue. (b) Mode used
during the cleaning conquest (only valence-3 patches). Each exterior face adjacent to
an edge of the patch boundary is flagged conquered and two gates per conquered face
are pushed to the fifo.

The only other difference with the previous decimating conquest
is that we restrain our conquest to valence-3 vertices. Figure 11
demonstrates that applied on a locally regular mesh, our coupled
conquests will perform a 3-to-1 simplification, which corresponds
to an inverse ”

p
3 subdivision” [16]. Therefore, a decimation con-

quest followed by a cleaning conquest will suppress two faces out
of three : we obtain near-optimal valence encoding and good mesh
decimation (see also Figure 1).

The conquest is terminated when the gate queue is empty. We
are then done with the first layer of decimation; we now may begin
the next layer of conquest, starting with a decimating one again. We
will stop when we reach the final number of vertices requested by
the user, or, very rarely, when we cannot suppress any vertices in a
layer without violating topology or metric constraints.

Figure 11: A: a regular area generates optimal patch tiling. B: remeshing resulting
from the vertex tagging process. Formation of extremal valences are encouraged, i.e.
valence 3 and 9 in the regular case; the cleaning conquest then targets the valence-3
patches. C: after the cleaning decimation, the simplified mesh is still regular.

3.7 Arithmetic Coding
The code sequence generated by a decimating conquest is com-
posed of valence codes between 3 and 6, plus some null patch
codes, while the sequence generated by a cleaning conquest is only
composed of codes 3 and null patch. The decoder, knowing that



we alternate between decimating and cleaning conquests, can sys-
tematically replace a 3 code by a 6 code for cleaning odd layers.
Indeed, during the decimating conquest, we try to minimize the va-
lence of every other vertex (tagged 	) on a patch in order to get
a significant number of valence-3 vertices, which are easy to re-
move safely during the cleaning conquest. However, these valence-
3 vertices are created only temporarily to keep our retriangulation
deterministic, but they were vertices of valence 6, hence the sub-
stitution we perform. Since an arithmetic encoder is very sensitive
to the occurrence of codes, it allows us to keep the peak of occur-
rence at valence 6 to optimize the compression. Note also that our
technique of cleaning decimation is related to the 2/4-coloring al-
ternation in [5], since we alternate between two different conquests
that, conceptually, always go by pairs too.

Since we must also reorder these codes for the decoder, we pro-
ceed as follows: Let A1 be the first sequence generated by a deci-
mating conquest, followed by a sequence B1 resulting from clean-
ing, then A2 is the second decimating conquest followed by B2,
..., and An and Bn being the two final sequences. We first sub-
stitute all the 3s by 6s in B1; :::;Bn, then we feed the sequence
Bn �An �Bn�1 �An�1...A2 �B1 �A1 to an order-0 adaptive arithmetic
encoder [29, 22]. We point out that valence codes have not been re-
ordered within a layer, only the layers themselves has been reshuf-
fled. We will see in Section 4 that the decoder will then be able to
decode this sequence layer by layer in the same order of conquest
than the coder did, guaranteeing synchronization and correct de-
coding. Notice that for a very irregular mesh, numerous null patch
codes may impede the compression ratio. We thus naturally tried to
remove every unnecessary code null patch, and found that simulat-
ing a decoding stage removes on average one tenth of these accident
codes. Since this tasks is achieved by the decoder, we describe it
further in Section 4.2.

3.8 Discussion
With our valence-driven decimating conquest, we generate one va-
lence code per vertex optimally, as in [28, 1]. Indeed, if the mesh
was very regular to start with, our global strategy will only generate
codes six (one per vertex) and the mesh after conquest will remain
regular: we will obtain extremely high compression ratios, just
like [1] since we encoded exactly the same zero-entropy sequence,
just reordered to create progressivity. We therefore achieved the
optimality sought for very regular meshes. Although a perfectly
regular mesh is not at all representative of typical meshes, any local
regularity of a mesh will generate a 3-to-1 simplification, while the
other regions will have more null patch codes. Roughly, we found
our coder to be always 25% to 40% better in compression ratio than
other progressive connectivity coders on very irregular meshes, and
easily up to 200% better on more regular meshes. We postponed the
discussion of the different results with measured rates to Section 6.

4 Progressive Connectivity Decoding
The decoder receives sequences of valence or null patch codes. For
a given layer, it refines the mesh in the same order as the conquest
decimated the vertices during the encoding process. However, we
receive the layers in reverse order, so we will start with a ”un”-
cleaning conquest (we call 3-patch discovery), followed, by a ”un”-
decimating conquest (called patch discovery), and we repeat. The
discovery and the vertex insertions are synchronized through the
state of the fifo queue; thus, the decoder will also know which layer
needs to be processed, and will be able to toggle between the two-
gates/one-gate modes for the patch/3-patch discovery (as was de-
scribed in Section 3.5). We now detail how the patch discovery
and the vertex insertions are done from the transmitted valences or
null patch codes, and explain the principle of code packing used in
our encoder.

4.1 Patch Discovery and Vertex Insertion
The decoder uses exactly the same strategy defined in the coder (see
Section 3), except for the significant difference that we now have to
find the border of a patch each time we cross a gate. Aside from this
particular problem, the implementation is perfectly similar, with the
same flags, tags, and the same fifo queue. We therefore refer the
reader to the section on coding (Section 3), and we only address the
patch border discovery.

When we cross a gate at any time during the discovery, its front
face is the seed face of a retriangulated patch that we seek. Now,
from the valence we receive through the order-0 adaptive arithmetic
decoder [22], we must find a deterministic way to find the borders
of this patch. It turns out that the decoder can deduce the way to in-
crementally walk on the faces using the current vertex tagging and
the same tag tables. Indeed, since we perform the same propagation
of tags and flags in the same order, and since the coder had retrian-
gulated the patch according the current tags using the tag table, we
know exactly how these retriangulation faces are connected. A few
cases are possible, depending on the tags read on the two vertices
of the gate, as illustrated in Figure 12. For a valence v code, the
discovery must be achieved successfully by walking on (v�2) free
faces (remember this remark for the code packing section). The
vertices are then flagged conquered and tagged to minimize or to
maximize according to the vertex tagging table: we are then ready
to add a vertex of the correct valence inside the patch, and we can
proceed to the rest of the discovery.

code 3 4 4 5 5 5 6 6

Figure 12: The polygon discovery is achieved from an active input gate with tagged
vertices and one valence code. The tags assigned to the vertices determine how to
incrementally walk onto the faces from the current front face of the gate. A valence
v� 3 transmitted code leads to the discovery of (v�2) free faces.

4.2 Code Packing for Redundancy Elimination
We described in the previous section the basic decoding algorithm
that makes the assumption that a valence v code must lead to a ”dis-
covery” walk onto (v�2) free faces. We can further reduce the bit
rate significantly by eliminating some null patch codes due to the
fact that this walk is sometimes not possible because of neighboring
already-conquered faces. Let’s suppose the decoder gets a code of
valence v. If it is not possible to walk on the (v�2) adjacent faces
as defined by the tag table, it must be that the gate being currently
treated is actually a null patch, and the vertex valence we received
is for later. The decoder can, in that case, resume its discovery after
tagging this face as null patch. At the next gate where the (v�2)-
walk is possible, we know that the valence code was meant for this
very gate. This naturally defines a very simple code packing idea
for the coder, as we mentioned in Section 3: at the end of the en-
coding process, we give the current sequence of valence codes to
the decoder, which typically removes one tenth of the null patch
codes, then we feed the arithmetic encoder with the packed code
sequence. To our knowledge, using a simulated decoder to further
eliminate redundancies in a code sequence is a novel idea. Due to
its extreme simplicity, we believe it could be useful for conquest-
centered existing coding techniques.

5 Geometry encoding
Now that we have defined a connectivity encoding method, we must
also encode the geometry of the mesh, i.e., the positions of the ver-
tices. Like the vast majority of previous work, we first apply a
global quantization step to the mesh vertices, typically using 8 to
12 bits. Then, we can send the geometry information right after
each vertex’s valence code, to use the implicit order defined by our



conquests. Local prediction, using the probable smoothness and
regularity of the mesh, are used in order to further compress these
generated geometrical values. Inspired by [13], we also separate
normal and tangential components to further reduce the bit rate.

Barycentric Prediction

Each vertex transmitted in our algorithm is added in the middle of
a patch, where all the neighbors are perfectly known both by the
coder and the decoder (up to the desired quantization). The coder
and the decoder can therefore use the barycenter of all the vertices
of the patch as a first approximation for the position of the newly
created vertex. More sophisticated methods such as butterfly or
Loop stencil for prediction turn out to behave badly for irregular
meshes; in the absence of smoothness assumption on the mesh, the
barycentric prediction is as good as another in practice, as already
noticed for instance in [19].

Approximate Frenet Coordinate Frame

The coder or the decoder can also approximate the normal of the
mesh locally by a area-weighted sum of the normals of each triangle
present in the patch processed. The normal n and the barycenter b
now define the approximate tangent plane of the surface. We can
proceed to compute an approximate Frenet frame, in order to reduce
the excursion of the offset vector for smooth surfaces.

To compute the first tangent vector t1, we simply project the gate
onto the normal plane, and normalize the result. The second tangent
vector t2 is obtained through a cross product of n and t1: this com-
pletes the coordinate frame. Figure 13 illustrates the construction
for a set of vertices v1;v2; :::;vn defining a patch and its faces.

input gate

Local 
coordinate frame

v1

v2

v3

v4
v5

vr

vr

b

v6

v1

v2

v3

v4
v5

b

v6

P

v1 v2

v3

v4v5

v6

vr

v1 v2

v3

v4v5 en
co

di
ng

de
co

di
ng

v6

b t1

t1

t2n

α

γ

β

Figure 13: Prediction method for geometry encoding. The current input gate is
colored in red. Residuals are expressed in terms of both tangential and normal com-
ponents deduced from the current patch’s frontier, known for both the coder and the
decoder.

Quantization of Frenet Frame Coordinates

We denote vr the vertex position we now want to encode/decode.
With the Frenet frame we built, the coder finds the new Frenet co-
ordinate of this point by projection on our basis vectors (see Fig-
ure 13): vr = b+α � t1 +β � t2 + γ �n: Furthermore, we can round
each Frenet coordinate (α;β;γ) to a signed integer value so that the
decoder is able to restore the position of vr to the same quantized
value using a post-quantization. We process all the decimated ver-
tices of a layer as indicated, and find both the range and the offset
of each set of tangential and normal coordinates. We communicate
this information to the decoder before sending the t and n values of
all the vertices of the coming layer. With this two-pass technique,
we help the arithmetic coder to adapt the number of bits to the range
of the geometry. The decoder will just have to add the Frenet co-
ordinates to the barycenter to find the final position of the vertex
inserted.

Our experiments showed that this local Frenet quantization al-
lows the adaptive arithmetic coder to achieve a better adaptation to
normal and tangential distributions of each layer: as noted in [13],
most fine meshes contain much more information in the normal di-
rection that in the tangential directions. Our encoder can therefore
adapt to the smoothness (preponderance of normal) and/or the uni-
formity (very little tangential components) of the mesh encoded. As

demonstrated in the next section, this way to deal with geometry is
always 15% better than previous approaches, and can potentially be
much more for very uniform, smooth meshes.

6 Results
We tested our method on many different meshes, more or less regu-
lar, more or less uniform, to fully evaluate our coder performances.
On a typical mesh like the horse (see Figure 14), we can reduce
the original ascii VRML file to only 2.33% of its initial size for
a 12-bit quantization (and only 1.67% for a 10-bit quantization).
Note that this is respectively only 1:11 and 1:08 times more than
the same mesh encoded by an efficient single-rate encoder [28], but
with added benefit of a fully progressive transmission. Figure 14
and Table 1 sum up our compression results obtained from some
typical meshes; the rate/distortion curve, obtained from Metro [4],
proves the scalable behavior of the algorithm. Our current imple-
mentation encodes and decodes 5,000 faces/s on a regular PIII PC,
handling arbitrary genus and arbitrary number of holes.

The average rate for arbitrary meshes of our progressive connec-
tivity encoding is measured at 3.69 bits per vertex, not including
the optimally regular torus (only shown here to confirm the excel-
lent asymptotic behavior of the algorithm) or the fandisk using an
error metric. We obtain a gain of 30% to 45% for the connec-
tivity encoding ratios compared with the best progressive coders
published so far [5, 18]. Indeed, Cohen-Or et al. [5] and Pajarola
et al. [18] obtain in average 5.98 b/v and 7.0 b/v respectively on
their similar examples. We need to emphasize that our technique
allows for a fully progressive transmission, since we use our deci-
mating technique down to less than 1 thousandth of the vertices of
the original mesh (see Table 1), and often down to the minimum tri-
angulated mesh of equivalent genus. Some previous work remains
unclear on their decimation limits, while some others stop at about
20%, significantly loosing a part of the purpose of progressivity en-
coding.

The horse mesh mentioned above is encoded using 5.72 and 20
b/v by Cohen-Or et al. [5] for the connectivity and the geometry
respectively. In comparison, we achieve 4.61 and 16.24 b/v for
the same geometry quantization. The fandisk is encoded using 6.8
and 15 b/v by Pajarola et al. [18] respectively. We achieve 4.99
and 12.34 b/v for the same quantization (see Table 1) when us-
ing a volume-based metric (see Figure 1, bottom). These examples
are characteristic of our gains for arbitrary meshes. Highly regular
and/or highly uniform meshes can be coded much more compactly,
since our method exploits both regularity in valence and uniformity
in geometry. Therefore, all our results point to the fact that, even if
progressive lossless encoding seems to have an intrinsic additional
entropy, our technique minimizes the extra cost and renders pro-
gressive coding almost as good as single-rate coding.

Models Vertices Quant. Connect. Geometry Total
#bits bit/v bit/v bit/v

fandisk 6475 ! 4 10 4.99 12.34 17.39
horse 19851 ! 4 12 4.61 16.24 20.87
nefertiti 3407 ! 12 10 3.95 11.88 16.01
mannequin 11703 ! 4 10 3.58 9.98 13.59
venus 11217 ! 16 10 3.59 10.15 13.82
tiger 2738 ! 4 10 2.67 12.67 15.46
torus 36450 ! 24 10 0.39 3.58 4.02

Table 1: Compression rates for typical meshes. Notice that all these results deci-
mate the meshes down to about 1 thousandth of their original vertex count to be fully
progressive.

7 Conclusion and future work
We have presented a novel method for progressive, lossless com-
pression of arbitrary triangle meshes. Our contribution is two-fold:
we improved significantly upon existing encoders for both connec-
tivity and geometry. We showed that our encoding strategies for



Figure 14: Top: progressive compression ratios in bits per vertex for models with
increasing regularity. Bottom: the venus mesh is progressively transmitted from 20
to 11362 vertices, while its distortion [4] is rapidly decreasing. Note that the sample
points on the curve go by adjacent pairs, as our coupled decimating/cleaning conquests
do (see Section 3).

mesh connectivity and mesh geometry are both more efficient than
any comparable previous work on all our tests. We even com-
pete with single-rate connectivity coding techniques for very reg-
ular meshes, and take advantage of uniformity for geometry en-
coding as lossy encoders do [13]. Our algorithm defines a new
decimating conquest that allows us to be very close to the rate of
one valence per vertex, the floor for connectivity entropy [1]. We
also described an original inverse

p
3 simplification process that

combines valence-driven decimation and adaptive retriangulation
to maintain the regularity of valence along the progressive encod-
ing. The method presented is also easy to implement while near
optimal in the regular case. Finally, it is very flexible and open to
any decimation error metrics if needed. In the irregular case, the
null patch codes turn out to be the only impeding factor to better
the compression ratios. Even if we removed between one tenth and
one half of them using an innovative simulation of the decoding
process, we believe more work in this area would still increase the
benefits of our method. Compression ratio improvements, handling
of non-manifold meshes or even polygon soups, and genus reduc-
tion/encoding are obvious future work.

Acknowledgements
The authors want to thank: Michael Schindler for help with his range encoder, Peter

Schröder and Wim Sweldens for initial discussions, Zoë Wood and Mark Meyer for

advice and proof-reading, and finally Magali Mazière for her very precious help. This

work has been partially supported by the Integrated Media Systems Center, a NSF

Engineering Research Center, cooperative agreement number EEC-9529152.

References
[1] P. Alliez and M. Desbrun. Valence-Driven Connectivity Encoding of 3D Meshes.

In Eurographics Conference Proceedings, 2001.

[2] R. Bar-Yehuda and C. Gotsman. Time/space Tradeoffs for Polygon Mesh Ren-
dering. ACM Transactions on Graphics, 15(2):141–152, 1996.

[3] J-D. Boissonnat and F. Cazals. Smooth Surface Reconstruction via Natural
Neighbour Interpolation of Distance Functions. In ACM Symposium on Com-
putational Geometry, 2000.

[4] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring Error on Simplified
Surfaces. Computer Graphics Forum, 17(2):167–174, 1998.

[5] D. Cohen-Or, D. Levin, and O. Remez. Progressive Compression of Arbitrary
Triangular Meshes. In IEEE Visualization 99 Conference Proceedings, pages
67–72, 1999.

[6] M. Deering. Geometry Compression. In ACM SIGGRAPH 95 Conference Pro-
ceedings, pages 13–20, 1995.

[7] M. Denny and C. Sohler. Encoding a Triangulation as a Permutation of its Point
Set. 9th Canadian Conference on Computational Geometry, pages 39–43, 1997.

[8] O. Devillers and P-M. Gandoin. Geometric Compression for Interactive Trans-
mission. In IEEE Visualization 00 Conference Proceedings, pages 319–326,
2000.

[9] M. Garland and P. Heckbert. Simplifying Surfaces with Color and Texture using
Quadric Error Metrics. In IEEE Visualization 98 Conference Proceedings, pages
263–269, 1998.

[10] S. Gumhold and W. Strasser. Real Time Compression of Triangle Mesh Connec-
tivity. In ACM SIGGRAPH 98 Conference Proceedings, pages 133–140, 1998.

[11] H. Hoppe. Progressive meshes. In ACM SIGGRAPH 96 Conference Proceedings,
pages 99–108, 1996.

[12] H. Hoppe. New Quadric Metric for Simpliying Meshes with Apperance At-
tributes. In IEEE Visualization 99 Conference Proceedings, pages 59–66, 1999.

[13] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive Geometry Com-
pression. In ACM SIGGRAPH 00 Conference Proceedings, pages 271–278,
2000.

[14] D. King and J. Rossignac. Guaranteed 3.67v bit Encoding of Planar Triangle
Graphs. In Proceedings of the 11th Canadian Conference on Computational
Geometry, pages 146–149, 1999.

[15] D. King and J. Rossignac. Optimal Bit Allocation in 3D Compression. Journal
of Computational Geometry, Theory and Applications, 14:91–118, 1999.

[16] L. Kobbelt.
p

3-Subdivision. In ACM SIGGRAPH 00 Conference Proceedings,
pages 103–112, 2000.

[17] P. Lindstrom and G. Turk. Fast and Memory Efficient Polygonal Simplification.
In IEEE Visualization 98 Conference Proceedings, pages 279–286, 1998.

[18] R. Pajarola and J. Rossignac. Compressed Progressive Meshes. IEEE Transac-
tions on Visualization and Computer Graphics, 6(1):79–93, 2000.

[19] R. Pajarola and J. Rossignac. Squeeze: Fast and Progressive Decompression
of Triangle Meshes. In Proceedings of the Computer Graphics International
Conference, 2000.

[20] J. Rossignac. EdgeBreaker : Connectivity Compression for Triangle Meshes.
IEEE Transactions on Visualization and Computer Graphics, pages 47–61, 1999.

[21] J. Rossignac and A. Szymczak. WrapZip Decompression of the Connectivity
of Triangle Meshes Compressed with Edgebreaker. Journal of Computational
Geometry, Theory and Applications, 14:119–135, november 1999.

[22] M. Schindler. A Fast Renormalization for Arithmetic Coding. In Proceed-
ings of IEEE Data Compression Conference, Snowbird, UT, page 572, 1998.
http://www.compressconsult.com/rangecoder/.

[23] J. Snoeyink and M. van Kerveld. Good Orders for Incremental (Re)construction.
13th annual ACM Symposium on Comp. Geometry, pages 400–402, 1997.

[24] A. Szymczak, D. King, and J. Rossignac. An Edgebreaker-based Efficient Com-
pression Scheme for Regular Meshes, 2000. To appear in a special issue of
Journal of Computational Geometry: Theory and Applications.

[25] G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive Forest Split Com-
pression. In ACM SIGGRAPH 98 Conference Proceedings, pages 123–132,
1998.

[26] G. Taubin, W. Horn, J. Rossignac, and F. Lazarus. Geometry Coding and VRML.
In Proceedings of the IEEE, Special issue on Multimedia Signal Processing, vol-
ume 86(6), pages 1228–1243, june 1998.

[27] G. Taubin and J. Rossignac. 3D Geometry Compression, 1999-2000. ACM
SIGGRAPH Conference course notes.

[28] C. Touma and C. Gotsman. Triangle Mesh Compression. In Graphics Interface
98 Conference Proceedings, pages 26–34, 1998.

[29] I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic Coding for Data Compres-
sion. Communications of the ACM, 30(6), june 1987.




